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I propose a paradigm for scientific progress in natural language processing, centered around the

development of data-driven theories of language understanding. The central idea is to collect data

in tightly scoped, carefully defined ways which allow for exhaustive annotation of a behavioral

phenomenon of interest. With such data, we can use machine learning to construct explanatory

theories of these phenomena which can be used as building blocks for intelligible AI systems.

After laying some conceptual groundwork for the idea, I describe a series of investigations into the

development of data and theory for representations of shallow semantic structure in natural language

— in particular, using Question-Answer driven Semantic Role Labeling (QA-SRL), a simple schema

for annotating verbal predicate-argument structure using highly constrained question-answer pairs.

While this just scratches the surface of the complex language behaviors of interest in AI, I outline

principles for data collection and theoretical modeling which can inform future scientific progress.
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GLOSSARY

GLOSSARY: A list of opinions or beliefs about how terms should be used. A descriptive notion
of glossary is also possible, but this glossary prescribes against it.

ARTIFICIAL INTELLIGENCE (AI): The study of intelligent behavior: how to perceive, reason, and
act in service of discovering truth and achieving goals.

While humans provide a useful example and existence proof for certain aspects of intelligence,
AI is concerned with intelligence more broadly, and not just describing or imitating human
behavior.

COMPUTATIONAL LINGUISTICS: The study of human language, either viewing it as a computa-
tional system or performing analysis using computational models and tools.

MODEL: A representation of a phenomenon which produces predictions about it.

“Models,” in common parlance, simplify their subjects and make them more accessible to the
human mind, so humans can make these predictions. For example, the heliocentric model
of the solar system gave Johannes Kepler a way of predicting the motion of planets in the
sky. In the context of modern AI, on the other hand, the term “model” generally refers to a
machine learning model which outputs predictions directly. The workings of the model don’t
need to be accessible to the human mind (i.e., subject to familiar patterns of reasoning) in
order for the model to be useful for making predictions; instead, the human is tasked with
interpreting its inputs and outputs in the context of their knowledge and goals (i.e., modeling
the model). The widespread usefulness of this looser notion of “model” is a relatively recent
development. It has gained prominence together with the success of what Breiman (2001)
calls the “algorithmic culture of statistical learning,” which seeks to model phenomena with
the highest-possible fidelity by minimizing the assumptions built into the modeling process
and doing model selection on the basis of predictive accuracy.

NATURAL LANGUAGE PROCESSING (NLP): The study of behaviors that exhibit or require compe-
tency with human language.

As an engineering practice, NLP comprises the set of tools and techniques for building
computational systems that operate on linguistic symbols (e.g., text) or signals (e.g., audio
data of speech), with a focus on performing tasks involving language competency. As a

vi



science, NLP is concerned with developing an understanding of the nature of this competency,
in the form of computational theories of language-based tasks. There is considerable overlap
between computational linguistics and NLP, particularly on the scientific side. The primary
difference is that the object of study in computational linguistics is the human language
system, whereas in NLP it is the set of intelligent behaviors involving human language. These
behaviors do not need to be performed reliably (or at all) by humans, placing NLP under the
umbrella of artificial intelligence.

THEORY: Common ground between a set of humans or humans and machines, allowing for
systematic agreement between all parties on the expected outcome of a prediction problem.

In common parlance, a “theory” of a phenomenon is often understood to be an explanation
of why that phenomenon happens the way it does. In my view, explaining a phenomenon
fundamentally comes down providing a way to predict it correctly, especially in unseen
conditions. So a theory is much the same thing as a model (see MODEL above). But I think
there are two important distinctions between models and theories, insofar as the words are
used in practice.

First: Viewing models and theories each as things which allow for making predictions, we
can ask: who or what do they allow to make predictions? Models in the modern statistical
sense (i.e., machine learning models) make predictions about their data distribution, but —
especially in the case of black-box neural networks — their outputs cannot generally be
predicted by humans doing anything short of running the model on a computer. In contrast, I
think the term theory is generally used to refer to models which are amenable to manipulation
by the human mind, where humans can use them to systematically reason about a domain and
predict outcomes.

Second: Theories carry the sense of being claims at truth, which is why we talk about theories
being “falsified” but not models. Given this, a theory must provide objective prescriptions.
Humans using a theory might make reasoning mistakes, inconsistent decisions, or judgments
on the basis of unformalized and unarticulated intuition. To ensure that a theory is well-
defined, systematic, and objective, we can require that multiple humans are able to reproduce
each other’s predictions, or formalize their understanding to the point that it is implementable
in a machine (where in the term “machine” I include abstract machines, such as formal systems
like mathematics; a machine can be implemented in a human mind). In practice, verifying
that this understanding is shared between people (and/or machines) requires successful
communication between all parties about the prediction problem of concern and the all details
of the theory — i.e., establishing it in the common ground (see Chapter 2). Furthermore, such
communication is also what makes theories useful, allowing humans and machines to jointly
reason and coordinate action in the service of shared goals and values. For these reasons, I
choose to ground my definition of “theory” in the notion of common ground.
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Chapter 1

INTRODUCTION: A CRISIS OF THEORY

Intelligence is whatever machines haven’t done yet.

— Larry Tesler, ca. 19701

Artificial intelligence, more than many fields of study, has a habit of eluding precise definition.

In what has been called the “AI Effect” (Hofstadter, 1979), once we understand how to build a

machine to do something, it is common to no longer see that behavior as requiring true “intelligence.”

Minsky (1990) writes (emphasis mine):

Even though we don’t yet understand how brains perform many mental skills, we

can still work toward making machines that do the same or similar things. "Artificial

intelligence" is simply the name we give to that research. But as I already pointed

out, this means that the focus of that research will keep changing, since as soon as we

think we understand one mystery, we have to move on to the next. In fact, AI research

has made enormous progress in only a few decades, and because of that rapidity,

the field has acquired a somewhat shady reputation! This paradox resulted from the

fact that whenever an AI research project made a useful new discovery, that product

usually quickly spun off to form a new scientific or commercial specialty with its own

distinctive name. These changes in name led outsiders to ask, Why do we see so

little progress in the central field of artificial intelligence? Here are a few specialties

that originated at least in part from AI research but later split into separate fields and, in

some instances, commercial enterprises: robotics, pattern recognition, expert systems,

1http://www.nomodes.com/Larry_Tesler_Consulting/Adages_and_Coinages.html

http://www.nomodes.com/Larry_Tesler_Consulting/Adages_and_Coinages.html
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automatic theorem proving, cognitive psychology, word processing, machine vision,

knowledge engineering, symbolic applied mathematics, and computational linguistics.

Today, it is safe to say that very few people are asking: why do we see so little progress in artificial

intelligence? Not only is progress in AI widely regarded as happening at breakneck speeds, but

some of the subfields Minsky mentioned as non-central to AI, particularly machine vision and word

processing (or more broadly, natural language processing), are now seen as core areas of study

within AI and are often branded as such.

So, what changed? In the case of natural language processing (NLP), I think there are two main

reasons the AI Effect has weakened:

• Machine Learning. The primary factor is almost certainly the dominance of machine learning

in AI. Machine learning, especially in the case of deep learning, has the relatively unique

property that it allows us to build machines which perform certain behaviors without us

fully understanding those behaviors. This allows us to claim success in building AI systems

without losing the “magic” of intelligence.2

• The Eliza Effect. Discussed more in Chapter 2, people tend to attribute human qualities to

machines that produce language, even if they know that language is generated by simple rules

or programs. This counters the AI Effect and helps NLP systems retain their magic, especially

in the case of language generation.

Before the dominance of machine learning in AI, one might regard the role of AI scientists as

being to automate themselves away: to take seemingly ineffable aspects of intelligent behavior

and characterize them well enough to relegate them to formal study in (potentially new) non-AI

fields. For example, logic-based AI researchers may describe their work as “discovery, refinement,

and formalization of the basic categories of our language and thought” (Gelfond, 2021). But

2By “fully understanding,” I mean the ability to manually code such behaviors in a traditional programming
language and to reason about emergent patterns in the results on a high level. What it means for us to “understand”
our systems will be discussed in more detail in Chapter 2.
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machine learning, and especially deep learning, leads to a different dominant modus operandi:

building systems which we don’t understand, but which exhibit behaviors which we associate with

intelligence.

This is, in many ways, a positive development. It has allowed for the development and pro-

liferation of myriad technologies and products, and we don’t always need to understand exactly

how something works in order for it to be useful to us. For example, it is likely that no individual

person deeply understands how every component of a computer works — and yet many people can

productively and enjoyably use computers. In addition, there is reason to believe that even if our

goal is to understand the world better, or build machines that understand the world better, we must

start with only the most general principles of learning and abstraction and let machines figure out

the details on their own. Based on a career of experience in AI, Sutton (2019) writes:

We have to learn the bitter lesson that building in how we think we think does not

work in the long run... the actual contents of minds are tremendously, irredeemably

complex; we should stop trying to find simple ways to think about the contents of minds,

such as simple ways to think about space, objects, multiple agents, or symmetries. All

these are part of the arbitrary, intrinsically complex, outside world. They are not what

should be built in, as their complexity is endless; instead we should build in only the

meta-methods that can find and capture this arbitrary complexity.

This lesson has, to some extent, been borne out by recent progress in training large models on as

much data as possible (Devlin et al., 2019; Liu et al., 2019b; Brown et al., 2020; Chowdhery et al.,

2022; Radford et al., 2021; Ramesh et al., 2022).

However, the Bitter Lesson leaves something behind: intelligibility. Large-scale machine

learning systems doubtlessly can catch on to a great deal of the structure that appears in their

training data. But if we don’t understand what that structure is — if we don’t have any sort of

handle on the “irredeemably complex” functions of intelligent behavior, then we don’t understand

what those systems are doing. As well as they may optimize their objective on their training data,

in many cases it’s unclear a priori whether that will translate into the desired outcomes when the
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machine is put out into the world. In order to trust AI systems, be able to anticipate and correct their

failures, and integrate them with other software, we need to be able to reason effectively about their

behavior. Building machines which are “more accurate” only benefits us to the point that we have a

theory of what they’re more accurate at doing, i.e., of the task we wish to accomplish. The notion

of theory will be discussed in more detail in Chapter 2.

There is a fundamental tension at work here. My view is that producing intelligible machines is,

at its core, about building machines which we can successfully model (i.e., we have good theories

of their behavior). However, if we had a correct and complete model of the intelligent behavior

we wished to implement, then we wouldn’t need deep learning to do it. And as of today, deep

learning on big data has brought unprecedented and fast progress in building machines, while trying

to construct theories of intelligent behavior hasn’t brought the same sort of success. I don’t think

it’s an overstatement to say that the field of natural language processing is facing a crisis of theory.

As progress in emulating human behavior has seemed to rapidly outpace our ability to understand

our models, should we just throw up our hands and embrace the chaos? What do we make of

the original scientific challenge of AI? To develop theories of intelligent behavior, or of language

understanding? This thesis explores these questions, with a particular focus on representations of

sentence-level linguistic structure and meaning.

Stated broadly, my position is this: We must take Sutton’s Bitter Lesson to heart. Intelligence and

language are irredeemably complex, and we cannot expect good results from simply programming

them the way we intuitively think they should work. Rather, we must be empirical in our approach

and be driven by data. However, being empirical does not mean being atheoretical: on the

contrary, data has no meaning — no connection to anything — without a theory that allows for its

interpretation (see Part I). Instead of programming machines according to “how we think we think”

a priori, we should try to develop what I will call data-driven theories, using machine learning

to help us construct comprehensible theories that capture tractable subsets of the complexities of

language and the world, as they appear in our data. These theories can help situate our machines in

the world (Chapter 2), and provide conceptual and programmatic handles which allow us to engineer

new capabilities into our systems (Part III). In this thesis, I lay out the basic tenets of data-driven
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theory as they apply to NLP. The paradigm requires thinking carefully about our approaches both to

data collection and modeling to facilitate the production of systems which capture progressively

more of the true complexity of natural language, in a way which scales with data while remaining

comprehensible and engineerable.

The rest of this document is organized as follows:

• Part I — NLP as a Science: Data-Driven Theories. First, I lay some conceptual groundwork.

In Chapter 2, I explicate the importance of theories of task performance and model behavior

as the basis for AI systems which use language in a way that can be said to share common

understanding with humans. Then in Chapter 3, I present an epistemological framework under

which these theories can be developed on the basis of data at large scale.

• Part II — Data: Annotating Natural Language with Natural Language. I lay out Four

Principles of Scientific Data for NLP, a guiding framework for data collection for the purpose

of developing data-driven theories. I explore these principles through case studies in data

collection and modeling for sentence-level predicate-argument structure (Chapters 4 and 5)

and discuss the advantages of Question-Answer driven Semantic Role Labeling (QA-SRL) as

a representation for this purpose.

• Part III — Theory: From Language, Structure. I discuss some of the challenges of

developing useful theories in a complex domain like language AI, and how it may be done on

the basis of the right data. As an example, I show how to induce a theory of semantic roles

from QA-SRL, and discuss recent work employing QA-SRL to add capabilities to a question

generation system which were not directly available in its training data.

• Part IV — Concluding Thoughts. I summarize the main tenets of data-driven theory and

briefly discuss future directions.
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Part I

NLP AS A SCIENCE: DATA-DRIVEN THEORIES

In Chapter 1, I presented the basic idea of data-driven theory: our goal is to use machine learning

and data curation to develop a better understanding of intelligent behavior and language use. In this

part of the thesis, I explore what this means and propose some basic ideas for how and why to do it.

Chapter 2 presents a foundational discussion of the role of theory in language understanding

systems. Core to my proposal is to model the use of AI systems as a signaling game, where in order

to understand how to make decisions on the basis of a model’s output, a human must reason about it

on the basis of common ground shared with that model. For our discussion, this common ground

takes the form of theories of two kinds:

• Model Theory: A theory of how a model behaves and what it reflects about the world. These

are what allow us to draw conclusions about the world and take action on the basis of a

model’s outputs.

• Task Theory: A theory of what it means to do a task, and what relates that task’s inputs and

outputs. These are what allow us to coordinate around the design and use of datasets and

models so we can employ them in service of our collective goals.

Both kinds of theories can be developed through exploration of either datasets or models, and I

present some examples of how to do so. I propose such theories as a missing link beyond benchmark

performance, allowing us to reason about our models beyond what ostensive measures on datasets

allow.

However, we quickly run up against the irredeemable complexity of language and the world:

full, comprehensible theories of language meaning and use require the representation of a great

deal of linguistic and world knowledge. Manual development of such theories is impractical, if not
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impossible. This fact has led many, in the spirit of Sutton’s Bitter Lesson, to advocate for abandoning

the so-called “Rationalist” program of specifying theories of specific intelligent behaviors in favor

of the “Empiricist” program of encoding only the most general learning principles into AI systems

and letting them learn on their own.

In Chapter 3, I present an alternative framework based in the epistemology of Pragmatism,

which acknowledges the advantages of both the Rationalist (theoretical) and Empiricist (data-driven)

approaches to AI. As a pragmatist program of progress, I outline an approach to the development of

scalable theories, embracing the idea that a theory should be the best explanation of data, and the

fact that machine learning is an ideal tool both for simulating and explaining data. The essential

idea is to collect relatively theory-agnostic data at large scale, and then to model it using carefully

chosen inductive biases that allow for the automatic construction of computational theories of the

phenomena that data captures.

Parts II and III will put the ideas from this part into practice, developing the basic components

of a scalable approach to shallow semantic representations. This thesis necessarily covers only a

very small part of the story. The Empiricist paradigm has undoubtedly advanced our engineering

ability, but it has offered us less when it comes to deeply understanding what we are doing, and how

to better characterize our objectives. This problem is increasingly important as NLP systems see

widespread deployment. Altogether, I hope the chapters in this part present a thought-provoking

alternative to the Empiricist mainstream line of thought in NLP.
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Chapter 2

COMMON GROUND: A BASIS FOR ASSIGNING MEANING TO
MACHINE LANGUAGE

I present a philosophical framework for human–machine communication and language under-

standing. My key assumption is to view language not as an independent object which may be

“understood,” but as a medium which agents may use to understand each other and the world. Draw-

ing on the philosophy of language, I argue that the key prerequisite to successful communication

between humans — as strategic, cooperative communicators — is the development of common

ground: working assumptions which are mutually adhered to, and assumed to be in the common

ground, by all parties. Generalizing this, I argue that successful communication between humans

and machines relies on theories of behavior which are implemented by the machines and understood

by the humans. I outline two paradigms for advances in language understanding systems in this

spirit: analyzing black-box models to derive theories of their behavior, constructing models on the

basis of prescriptive task specifications to allow for formal analysis.

2.1 Introduction

The ELIZA Effect, named after a 1966 chat bot by Joseph Weizenbaum, is the human tendency to

attribute to software greater abilities than it actually has, particularly when it produces fluent natural

language. Weizenbaum noticed that users of his system quickly became emotionally involved with

it, “conversing with the computer as if it were a person who could be appropriately and usefully

addressed in intimate terms” (Weizenbaum, 1976, p. 7). He continues:

Another widespread, and to me surprising, reaction to the ELIZA program was the

spread of a belief that it demonstrated a general solution to the problem of computer

understanding of natural language... This reaction to ELIZA showed me more vividly
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than anything I had seen hitherto the enormously exaggerated attributions an even

well-educated audience is capable of making, even strives to make, to a technology it

does not understand. (Ibid, p. 7)

Today more than ever, AI systems perform a wide range of classification tasks with high

accuracy, produce natural language text which is highly fluent and diverse, and about them we

understand preciously little. As Bender and Koller (2020) argue, we should be careful not to impute

an understanding of language meaning, particularly in terms of communicative intent, on systems

which do not possess intent and have not been exposed the external world with which that meaning

is concerned.

Yet, the imputation of “meaning” in a broader sense is inevitable: anyone who is using an AI

system for something is interested in what its outputs mean for the task they are trying to accomplish.

When a machine produces high-accuracy classification results, or seemingly fluent, relevant, and

correct natural language text, we are faced with the question of what to do with it: what kinds of

meaning can a machine convey, and how? This question is crucial for guiding the development of

AI systems, as it is the basis upon which we use these systems to make decisions in the world.

In this chapter, I propose a framework in which to answer this question. My key assumption

is to view symbolic outputs of a machine (such as classification labels or natural language text)

as utterances in a signaling game (Lewis, 1969) aimed at communicating underlying meanings

between agents (Section 2.2.1). In light of this, asking whether a system “understands language”

misses something fundamental to language, which is that it is a medium through which agents may

understand each other — that is, language understanding is not a property of a system, but a relation

between systems (and/or humans).

Within this framework, the key prerequisite to mutual understanding between humans is the

existence of common ground: working assumptions of communication which are mutually adhered

to, and assumed to be in the common ground, by all parties (Section 2.2.2). Generalizing this, I

argue that successful communication between humans and machines relies on theories of behavior

which are implemented by the machines and understood by the humans. I illustrate this argument
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(a) Paul Revere’s Ride (Lewis,
1969). According to legend,
American Revolutionary Paul Re-
vere used a signaling protocol to
learn from across the Charles river
when a British invasion began:
one light in the Church tower if
they came by land, two if by sea.

(b) Reference games (Frank and
Goodman, 2012). Interlocutors
reason about each other’s speech
situations to deduce meanings.
Here, the listener understands
“blue” to refer to the blue square,
since the circle has a better refer-
ring expression available.

(c) Psychological games (Berne,
1964). The salesman’s implicit
meaning that the customer is of
low status is (also implicitly) re-
futed by the customer. The
sale succeeds because of mutu-
ally held assumptions about hu-
man psychology and society.

Figure 2.1: Signaling games of varying complexity.

with a thought experiment, The Dinner Non-Dilemma (Section 2.4), demonstrating the role of these

theories being 1) correctly implemented by the machines, and 2) in the common ground between

the users and designers of the systems. I then outline two ways to use these theories: as descriptive

theories of black-box models (Section 2.5), or as prescriptive theories according which to construct

models (Section 2.6.1).

2.2 Background: a Primer on Communication

To motivate my approach, I will first examine the problem of communication in the abstract. This

will provide us with general concepts and principles which we will later apply to the problem of

human communication with machines (Section 2.3).

2.2.1 Signaling Games

A straightforward framework for understanding communication is Lewis (1969)’s signaling games.

The simplest form of a signaling game consists of a speaker S and a listener L. S has in mind a
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meaning m ∈ M (corresponding to, e.g., a world state, desired action, or other information relevant

to the speaker’s goals). S can only communicate to the listener by sending them a single utterance

u ∈ U , where |M | ≤ |U | and these sets have no other structure. The listener L knows the set of

possible meanings M but does not have direct access to m. The goal of both agents is the following

outcome:

Goal (successful communication): L correctly guesses S’s meaning m on the basis of the their

utterance u.

This goal is shared by both agents, so we say they are cooperative and strategic. Real signaling

games may be as simple as this one or much more complex, with a variety of notions of “meaning”

(see Figure 2.1 for some examples). We may understand the goals of each agent as follows:

Speaker’s goal: Given a meaning m, produce an utterance u from which the listener will derive the

meaning m.

Listener’s goal: Given an utterance u, derive the meaning m from which the speaker would have

produced u.

Not only does the ability of a speaker and listener to communicate successfully depend on their

models of each other, but these models are mutually recursive: the listener must model the speaker’s

model of the listener’s model of the speaker, and so on, ad infinitum. While this circularity

may seem like a problem, the mutual modeling approach has been fruitfully applied in Gricean

pragmatics (Grice, 1975; Frank and Goodman, 2012) and game-theoretic approaches to natural

language semantics (Clark, 2012). The key to overcoming the circularity inherent to this problem is

the idea of common knowledge.

2.2.2 Common Knowledge and Common Ground

A group of agents has common knowledge of a proposition P when everyone in the group knows P ,

everyone in the group knows that everyone knows P , and so on, ad infinitum (Lewis, 1969). Despite

requiring an infinite regress to state mathematically, this kind of shared knowledge is ubiquitous in
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practice. Friedell (1969) gives the example of two mathematicians A and B who know each other

well. We may write:

(1) A knows that 2 + 2 = 4.

(2) B knows that A knows that 2 + 2 = 4.

(3) A knows that B knows that A knows that 2 + 2 = 4.

. . .

And so on. It is easy to imagine both A and B agreeing that every statement in this infinite sequence

is true.

Now consider an injective function f : M ↪→ U from meanings to utterances in the context of

the simple signaling game in Section 2.2.1. The speaker S will only use this function to produce

utterances if they know that the listener L knows that they will use it, which will only be the case

if L knows that S knows that L knows, etc.; these conditions are satisfied when S and L are able

to coordinate on f beforehand and establish it as common knowledge. This then allows them to

communicate optimally.

Adapting this theoretical solution to realistic scenarios requires a slight change. In practice,

agents often do not have the opportunity to coordinate on common knowledge about their communi-

cation protocol in advance, so even if it is shared between them, it can not be known to be shared

(or known to be known to be shared, etc.). So instead of speaking of common knowledge, the best

an agent can do is presuppose working assumptions about communicative conventions, use these

presuppositions a practical basis for producing and interpreting messages, and revise or build on

top of them as they interact with others. Roughly following Stalnaker (2002), let us say that an

agent presupposes a proposition P among a group of interlocutors if they act as if they take P for

granted, and also presuppose that everyone in the group presupposes P . This allows us to define the

following notion:

Definition (common ground). The common ground among a set of agents is the information which

is presupposed by all agents in the set.
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Common ground underlies the use of communicative convention in light of the “arbitrariness of

the sign” noted by de Saussure (1916), particularly in the setting of strategic, cooperative agents.

The game-theoretic framework of signaling games assumes that each agent’s status as strategic and

cooperative is in the common ground as well; this assumption is operationalized in the theory of

Rational Speech Acts (Frank and Goodman, 2012) to explain pragmatic inferences. Approaches

to pragmatics such as that of Grice (1975, 1989) add additional assumptions (called maxims of

communication) to the common ground to explain pragmatic inference in a similar way. Even in

the context of conventional semantics, many approaches to language meaning explicitly model

discourse as a process of updating or adding to the common ground (Stalnaker, 2002) or other

bodies of information shared by interlocutors (Portner, 2004), an approach broadly termed dynamic

semantics (Kamp, 1981; Heim, 1983; Stalnaker, 1978).

Studies also suggest that acquiring and building common ground is integral to human language

acquisition. Baldwin (1995) argue for the importance of joint attention in language learning, where

there is mutual awareness (i.e., common ground) that a child and their caregiver are attending to the

same thing. Not only has joint attention been experimentally demonstrated to facilitate language

learning in children (Tomasello and Farrar, 1986; Brooks and Meltzoff, 2005),1 but Tomasello

et al. (2007) argue that infants actively seek out shared intentionality (leading to joint attention)

when pointing to objects. Computationally speaking, the importance of joint attention — a lived

experience of mutual knowledge — makes sense as a base case of common ground upon which

further communication can grow it into a full language system.

2.3 Communication with Machines

From the arguments in the previous section, the importance of common ground for communication

between humans seems clear. But we are interested in the question of communication and language

1See Bender and Koller (2020) for more discussion of these references. They argue that that language models,
lacking intersubjectivity or experience of things like joint attention, cannot learn meaning. While I agree about the
importance of joint attention in humans, I embrace a broad picture of the acquisition of meaning. Joint attention may
be one way of bootstrapping common ground; in Section 2.3, I present alternatives which are more directly tailored
to communication using machines.
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understanding with machines. Can common ground exist between a human and machine?

As described in Section 2.2.1, successful communication between strategic, cooperative agents

requires each agent’s model of the other’s behavior to converge on a shared mental model of

what connects symbols to their meanings or referents in the world. Communication between

humans succeeds to the extent that human experience grounds our language in similar concepts, and

language communities can coordinate on common conventions to express these concepts (Lewis,

1969). Machines, however, do not necessarily leverage the same concepts or have access to the

same conventions, and they do not necessarily behave as strategic, cooperative agents modeling

their interlocutors.

This puts us in a relaxed version of Lewis’s signaling games. Consider the case where the speaker

S is a machine and listener L is a human. Again, we can view S as a function f : W → U from

world states w ∈ W to utterances u ∈ U .2 However, in this case f is not necessarily strategically

chosen — it may be fixed, e.g., if f is directly programmed into S by its designers. The goal

of L remains the same: to infer the current world state w, or some information about it, from

the machine’s utterance u. Success in this game simply requires L to have a model of f−1. (A

symmetric argument applies to the case where S is a human and L is a machine.)

Said another way, successful communication involving humans and machines relies on humans

having a good understanding of how machine behavior reflects and impacts the world. This implies

that the problem of producing language understanding systems as such is the problem of building

systems which use language in human-modelable ways. Building modelable machines in this sense

means building machines whose behavior we can understand and reliably connect to the external

world in which they’re operating to gain insights about it.

I see two main scenarios for this, though I do not claim that this breakdown is necessarily

systematic or exhaustive:

1. Descriptive theories of the emergent behavior of black-box systems (Section 2.5). Large-

scale deep learning models, such as large language models, encode a lot of information about

2Formally, this is the same as the speaker in Section 2.2.1, but I refer to a function of “world states” rather than
“meanings” to avoid the implication that the machine necessarily has an “intended meaning” in mind.
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their training corpora, but it is not clear a priori what we can conclude about their training

process, or the world more broadly, from their behavior. Developing theories of how deep

learning models work will allow us to draw better conclusions about how to act on the basis

of their outputs.

2. Prescriptive theories, or specifications of machine behavior according to which we intention-

ally design systems to reliably behave (Section 2.6.1). Instead of building purely black-box

models and then studying how they work, we can directly develop theories of the tasks that

we want to achieve — e.g., strategies of how to decompose a problem — which we can use to

structure our models, providing strong guarantees about their behavior. In this case, successful

communication with machines relies on the existence of common ground between a system’s

users and its designers who specify its behavior.

In addition to providing guiding principles for NLU research, I think this perspective invites a simple

resolution to the highly-debated question of whether language models (or any machine learning

systems) can “understand language.” Instead of debating what kind of behaviors or prior conditions

must hold in order for a system to be objectively said to “understand language,” we can regard

language understanding as a contextually-dependent relation between humans and machines, where

the nature and degree of understanding about the world that humans can gain from machines (or

the effectiveness with which the human can delegate action in the world to the machine) is built on

the fidelity of the human’s model of the machine’s behavior. Put another way, this is the combined

extent to which 1) the system models something about the world and 2) we can reliably model this

model and interpret what it means. Note that this does not necessarily privilege machines which

sound human — rather, it privileges machines which which have clearly specified, interpretable

language behavior, which may or may not be human-like.

Before diving into each of the three above scenarios in turn, I will illustrate the main idea in

more detail with a thought experiment.
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2.4 A Thought Experiment: The Dinner Non-Dilemma

It is just before 5pm and you are at your workplace. Your phone produces a familiar

noise: a high pitched ding. You look at the screen and see a panel appear with the name

of a friend who works near you. It also contains the text: “Dinner?” You conclude

that your friend is thinking about having dinner with you tonight and wants to know

whether you’re available and interested. You are correct.

Communication succeeded — but how? This feat relies on three interrelated communication

systems, which together will form our understanding of the domains of common ground which must

be established in order to integrate machines into the communication process.

2.4.1 Human↔Human: Language

On the surface level, our thought experiment is an instance of language communication between

humans. Decoding your friend’s mental state from their very brief message leverages a great deal of

common ground. First, there must be a mutually understood concept of “dinner” associated with the

word. Second, understanding that the dinner in question will be tonight is an example of the use of

a game-theoretic focal point (Schelling, 1960): it is the only reasonable default in the absence of a

specified time; since your friend knows that you will default to it, they don’t need to say it. And

finally, decoding your friend’s idea of having dinner with you follows from Grice (1975)’s maxim

of relevance: as there is no other mutually apparent reason a question of theirs about dinner would

be relevant to you. That your friend is also practically aware of this collection of factors is also why

they chose to produce the message “Dinner?” in the first place, confident that you would discern the

intended meaning.

By comparison, if our utterances are ultimately being interpreted by machines and not other

humans, our choice of utterance depends on our understanding of how the machine processes

language, and a better understanding will help us better achieve our goals. For example, in

web search, the ability of a user to find the information they’re looking for depends not only on

the capabilities of the search engine, but the user’s skill at leveraging them. This includes an
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understanding of the system’s limitations (e.g., not bothering with complete sentences for keyword

search), any of its special syntax or operations (e.g., + and - to force results to include or exclude a

word), and tricks for obtaining more reliable results, e.g., including site:reddit.com in a Google

query (DKB, 2022). The same applies when the user is acting as listener: when a friend shares

information out loud that they are reading off of a web page, you might expect that they are

paraphrasing the main points; whereas, when a search engine provides a snippet of language content

from the page, you might treat it as a verbatim quote. Communicating a model of how a system

processes language, so the user can accordingly adjust how they produce and interpet language with

it, is an important component of building language understanding systems.

2.4.2 Human↔Machine: Specifications

The Dinner Non-Dilemma thought experiment involves more than just linguistic communication.

We may also ask: how, upon seeing the notification on your phone, were you able to draw a

conclusion about your friend, who wasn’t with you at the time? It is because when you saw the

notification with your friend’s name, you inferred that your friend of that name, a few seconds

prior, engaged their phone (or other messaging app), selected your contact information, typed out

“Dinner?”, and hit the “send” button — or otherwise did something that they expected would result

in the message appearing on your phone. This conclusion is based on your mental model of what

connects the physical world to the digital one.

Where this model breaks down, people can be led to inaccurate conclusions: for example,

understanding that phone numbers can be spoofed is important for avoiding phishing, and under-

standing that strangers may find your email or phone number, or automatically send messages to

huge numbers of people, can be important for identifying scams. Secure messaging apps like Signal

use “safety numbers” exchanged via external channels to establish the identity of both interlocutors

in the common ground and avoid man-in-the-middle attacks.3

Furthermore, the information in the common ground about the function of texting technology

3https://web.archive.org/web/20230410175617/https://support.signal.org/hc/en-us/articles/
360007060632-What-is-a-safety-number-and-why-do-I-see-that-it-changed-

 https://web.archive.org/web/20230410175617/https://support.signal.org/hc/en-us/articles/360007060632-What-is-a-safety-number-and-why-do-I-see-that-it-changed-
 https://web.archive.org/web/20230410175617/https://support.signal.org/hc/en-us/articles/360007060632-What-is-a-safety-number-and-why-do-I-see-that-it-changed-
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determines what types of communication are possible. The use of “delivered” notifications in

texting apps functions explicitly to establish that a message may now be treated as being in the

common ground between interlocutors, making communication easier and more efficient (no need

to re-send messages to ensure they arrived).4 The presence of read receipts, which show a message’s

sender whether the recipient has read their message, adds even more information and enables

entirely new communicative capabilities: “Leaving someone on read” — reading the message but

not responding for a long time — has become commonly understood, in some contexts, as a rude or

even performative way of ignoring someone.5

The more general term for kind of model that we’re talking about here is a program specification.

Given that a computational procedure p produces symbols y, what can I conclude about the world?

This question, in the context of writing traditional (i.e., non–machine-learning) software, is answered

by the API contract of p. A function’s API contract allows you to determine when you should use

it, what you should pass in as its input, and what you should do with its output. A user’s model of

how a machine’s outputs reflect the world is what informs the user of how to act on the basis of the

system’s outputs, and their model of how a machine acts in the world in response to input lets the

user determine what to say or input to the machine.

2.4.3 Machine↔Machine: Protocols

The last layer of communication in the Dinner Non-Dilemma is electronic communication between

your friend’s device and your phone. The text “Dinner?” was encoded on your friend’s device as a

string of bits using an encoding scheme such as UTF-8 (Yergeau, 2003). After further processing, this

string of bits was converted into an electromagnetic signal according to a wireless communication

standard such as IEEE 802.11 (IEEE, 2021), trasmitted to a nearby wireless receiver connected

4As another perhaps more common example of such an inefficiency, consider the ubiquity of the question “can
everyone see my screen?” when screen sharing in a video call. Despite most video conferencing software these days
prominently notifying the user in the UI that others can see their screen, even slight doubt that such an important
element of the common ground is shared must be eliminated in order for communication to continue smoothly.

5Bear in mind again the importance of common ground: leaving someone on read can only be understood as
performative ignoring if the reader knows that read receipts exist, the sender knows they know this, and so on. It may
not apply when communicating with less tech-savvy texters.
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to the Internet or a cellular network, and routed through many more layers (and protocols) before

arriving at your phone’s antenna, at which point your phone inverted the encoding procedure done

at your friend’s device, extracted the UTF-8–encoded message, and displayed it on your screen.

The communication problem between phones and other digital devices closely reflects the pure

signaling game laid out in Section 2.2.1. For machines to reliably transfer bit strings successfully,

they must implement a common protocol for encoding and decoding those bits to and from the

physical medium. From the perspective of a programmer, if you wish to write networking code that

works correctly in a device, you must presuppose something about the protocol implemented by the

machine on the other end: otherwise, there is no reliable way to facilitate successful communication.

Establishing protocols in the common ground, giving them names, and creating canonical ways for

machines to identify themselves as implementing specific protocols is one of the main functions of

the RFC (Request for Comments) system through which communication protocols are established

as standards. Treating RFCs as authoritative sources of common ground has allowed for the

development of highly scalable computer networking systems which communicate with impressive

reliability. For users communicating with electronic systems, justified confidence in this reliability,

and the non-mutation of messages sent across electronic media, is important for communicative

success.

2.5 Descriptive Theories: Understanding Black-Box Models

The Dinner Non-Dilemma in the previous section illustrates the role of theories of the behavior

of intentionally-designed technologies, like phones or other electronic communication systems.

Modern deep learning systems such as language models raise new questions: they clearly encode a

lot of useful information from their training corpora and exhibit some familiar language behaviors,

but how exactly their behavior derives from their training process is not clear, and it is unclear how

to draw conclusions about the world from their behavior. In this section, I will discuss the structure

and role of descriptive theories in making sense of language models.

Consider the following communication scenario, where Marcus and Davis (2020) use GPT-

3 (Brown et al., 2020) to generate the bold text:
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You poured yourself a glass of cranberry juice, but then you absentmindedly poured

about a teaspoon of grape juice into it. It looks okay. You try sniffing it, but you have a

bad cold, so you can’t smell anything. You are very thirsty. So you drink it.

You are now dead.

Their interpretation is that “GPT-3 seems to assume that grape juice is a poison.” Together with the

fact that grape juice is, of course, not a actually a poison, they take GPT-3’s continuation to reflect

a lack of understanding of the world and “lack of comprehension” of language. But behind their

interpretation and this conclusion is the assumption that text continuations from a language model

will reflect the actual likelihood of events according to a consistent set of underlying beliefs about

the world.6

I would interpret this interaction differently — instead, it implies that we should drop the

presupposition that a language model’s output, when interpreted in conventional English, will reflect

likely real-world outcomes or consistent beliefs about the world. So what does its output reflect?

Answering this question requires a theory of language models and how they connect to the world.

Any such theory starts with this: language models are approximate maximum-likelihood models of

their training data.7

Language models are “just” statistical models of text, and we cannot step into discourse with

them and expect to hold all (indeed, hardly any) of the presuppositions we are used to when

conversing with humans. For the cranberry juice example, instead of announcing that we have

“fooled” the language model into producing an output that is “incorrect” or “nonsensical,” we may

ask: how can we learn something from the model’s output? We may only answer this question

using our knowledge about how the model was constructed, and a theory of how this relates it to the

6One may suggest that Marcus and Davis give their interpretation of this GPT-3 continuation tongue-in-cheek, as
a way of illustrating that we should rethink the presuppositions we bring into the discourse. However, later in the
piece, they write: “A genuinely intelligent agent would do something entirely different: draw inferences about the
potential safety of mixing cranberry juice with grape juice.” This risks conflating the exact distinction I highlight in
this chapter, between putatively objective “intelligence” or “understanding” and subjective, presupposed concepts of
how meanings should be assigned to a model’s output.

7Here, I am using the term “language model” to refer specifically to maximum-likelihood models of text corpora,
and not, for example, models fine-tuned with reinforcement learning.
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world. One way of breaking this down, which I do not claim is systematic or exhaustive, is into the

following parts:

• Corpus: the corpus the model is trained on.

• Features: the elements of the prefix or prompt that the model represents and is capable of

tying back to its training corpus.

• Algorithms: the mechanisms by which a language model reproduces the distribution of its

training data, including how it translates its input features into output tokens.

Examining a language model’s behavior can tell us about its training corpus, learned features, and

algorithmic mechanisms, and vice versa. Furthermore, an understanding of any of the above three

inputs (e.g., features and algorithm), together with the language model’s behavior, tells us about the

other inputs (e.g., corpus). For example, suppose an unsmoothed 5-gram language model outputs

Hawaii with probability 0.55 following the prefix In 1961 Barack Obama was born in. In this

case, we can draw a clear conclusion: the token Hawaii follows 55% of the appearances of the

4-gram Obama was born in in the corpus. We know this because we have a full understanding of

the features (4-gram prefixes) and algorithm (counting) used by n-gram models. (To then draw

conclusions about the broader world, we then need a theory of how the corpus is related to that

world — an important issue which I will not address here.)

The same logic applies to neural language models, but the challenges of corpus, feature, and

algorithm understanding are much greater. Data like “You are now dead” in the cranberry juice

example, rather than representing a challenge “failed” by the model, provides behavioral data which

can lead to hypotheses like the following:

• Corpus: the text in the model’s training data does not report outcomes in proportion to their

real-world likelihood.

• Features: the language model may featurize its inputs less according to the real-world
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properties of the entities being mentioned, and more according to the narrative structure of

the text.

• Algorithm: text continuations are determined less according to physical simulation of the

described situation forward in time, and more according to lexical and structural cues or

foreshadowing in the input text.

These hypotheses may then be more rigorously tested against the model’s behavior in a wide range

of settings. To the extent to which any of the hypotheses is backed up in further investigation,

it gives us new tools for interpreting the outputs of language models — for example, if they are

found to be highly sensitive to narrative structure, then their output distributions might help teach

us something about that structure (particularly about how it’s expressed in the training corpus).

Examples of this kind of interpretive work include the following:

• Corpus: Brown et al. (2020) suggest on the basis of few-shot benchmarks that language

models are moving towards robust numerical reasoning abilities, as they generalize surpris-

ingly effectively and increasingly with scale. However, Razeghi et al. (2022) find that the

performance of large language models on arithmetic tasks can be largely predicted by the

frequency of the relevant number terms in their training data — suggesting these results do not

follow from robust numerical reasoning. This analysis was enabled by the public availability

of the Pile dataset (Gao et al., 2021) on which the GPT-J family of language models were

trained, and would not have been possible on GPT-3 using publicly available data. Here, the

training data provides a source of truth which allows us to more accurately assess what it

means when the model produces an answer to an arithmetic problem — that it reflects specific

correlations in the training data rather than, potentially, the result of a crudely-implemented

addition algorithm.

• Features: Brown et al. (2020) proposed that GPT-3 was performing “few-shot learning,”

having picked up on some kind of meta-learning capabilities from the task of next-token

prediction in context. However, an investigation by Min et al. (2022) found that performance
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in Brown et al.’s few-shot setting is insensitive to the pairing of inputs and outputs in the

prompt, rather only depending on the input space, output space, and overall format of the

input text. Knowing that the model is insensitive to this feature — the input/output mapping

— is crucial for understanding how the model constructs the output that it does, and that

“meta-learning” capabilities may not be an important component.

• Algorithm: Elhage et al. (2021); Olsson et al. (2022) provide evidence, through a large set

of experiments, for the existence of “induction heads” — attention heads which implement

copying-like behavior. Insights like this into the algorithmic operations of a language model

can provide frameworks for us to assess whether these models implement (or fail to implement)

cognitive and linguistic tasks of interest, and investigate and debug their behavior on specific

inputs.

Such analysis work comprises the incremental construction of theories of language models which

allow us connect their behavior to abstract concepts that we understand and properties of their

training data. At the end of the day, “language understanding” with a language model is about us

understanding the language model at least as much as it is about the language model understanding

us.

Language models are not a “general solution to the problem of computer understanding of

natural language,” to echo the subjects of Weizenbaum (1976)’s skepticism, because language

understanding does not exist inside a model. It exists between agents, and its nature is contingent on

the common ground between those agents. But, this does not mean that language models haven’t

learned anything about the world, nor that they can never be relied on to perform certain tasks. The

challenge is to discern the signal from the noise, developing theories of what language models have

learned so that we can interpret and use their outputs appropriately.

2.6 Prescriptive Theories: Intentional Design

Although black-box neural network language models are the dominant paradigm in NLP, we are not

constrained to acting only on the basis of reverse-engineered theories of machine behavior. We can
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instead begin with prescriptive theories of how systems should behave, and then intentionally design

systems to conform with those theories. Such theories are necessary for designers to communicate

with users and other stakeholders of a system in order for the use of the system to be effective and

safe. There are many ways to approach this; I will discuss two: refining task specifications, and

building decomposable and modular systems.

2.6.1 Refining Task Specifications

A first step is establishing common ground between humans (including designers and users of a

system) about what it is a system should do. Unfortunately, developing common ground around

task specifications proves difficult. First of all, it’s well-recognized as difficult to make sure our

data and metrics accurately reflect the capabilities we want to instill in models (Liao et al., 2021).

Problems range from spurious correlations making data artificially easy, e.g., in natural language

inference (Gururangan et al., 2018) or multi-hop question answering (Min et al., 2019), to evaluation

challenges on open-ended language generation tasks (Krishna et al., 2021).

Part of solving these problems is improving our data curation practices (Bowman and Dahl,

2021), but another part is fundamental to statistical learning: every dataset has artifacts (Gard-

ner et al., 2021). So, getting data to accurately reflect tasks in spite of this requires rethinking

our task definitions as well. One particular approach that seems promising to me is to develop

narrowly-scoped tasks which facilitate exhaustive annotation over text. This can minimize the

artifacts that result from annotators producing a convenience sample of language. Examples of the

approach include Text-Based NP Enrichment (Elazar et al., 2021), where pairs of pre-specified noun

phrases are related to each other using prepositions, or Question-Answer driven Semantic Role

Labeling (He et al., 2015b, QA-SRL), which labels semantics with natural language question-answer

pairs that conform to a highly restrictive template, facilitating relatively exhaustive annotation in

practice (FitzGerald et al., 2018; Roit et al., 2020). While the scope of such tasks is small, we can

expect the evaluation results to be more meaningful because annotation is less biased, and modules

performing these tasks can be composed into larger systems (Section 2.6.2). These approaches also

define tasks to explicate linguistic structure while minimizing arbitrary or arguable decisions about
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how to map natural language into formal ontologies.

This brings me to another pressing problem for designing task specifications: making sure

they are coherent, well-formed, and mutually understood by all stakeholders. This is also difficult:

some tasks have many multiple overlapping and competing definitions, as with hate speech and

toxicity (Poletto et al., 2021), whereas in natural language inference annotators often systematically

disagree with each other (Pavlick and Kwiatkowski, 2019; Nie et al., 2020). Filtering out data

points with low agreement or patching these problems with caveats in the annotation guidelines risk

hiding the symptoms of the underlying cause: an ill-specified task. Improving this situation requires

careful examination of our tasks in the context of their potential interpretations by annotators and

users. For example, Zeinert et al. (2021) conduct a deep investigation of online misogyny and

present a taxonomy which can form a basis for the development of models sensitive to a variety of

distinctions in abusive language. As for ambiguity, we can examine its sources and then directly

represent ambiguity in the task: for example, Min et al. (2020) find that half of the questions

in the NATURAL QUESTIONS dataset (Kwiatkowski et al., 2019) are ambiguous, and formulate

a task and dataset where multiple possible interpretations of each question are accounted for and

disambiguation is done in the output. The result is both more reliably measurable and more reflective

of real-world question answering than the original task; similar work has subsequently been done

for visual question answering (Elias Stengel-Eskin et al., 2022) and natural language inference (Liu

et al., 2023). Another notable example is gender-specific machine translation: When translating

into a language with gendered personal pronouns, Google Translate has a facility to detect gender

ambiguity in the source sentence and provide multiple, gender-specific translations (Johnson, 2018,

2020). This method enriches the system’s output to reflect more of the true complexity of the

machine translation task. With this extra context, the user can choose the translation which best fits

their needs (i.e., has the desired grammatical gender) — an outcome which would be impossible to

achieve in general if the system had to make a forced choice and output a single translation (as the

user may not even know that the output text is gendered, or what the relevant gendered pronouns

are).
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2.6.2 Build Decomposable Models

It is sometimes said that that no individual understands every part of a computer: there are too

many subsystems, too much complexity, too many layers of abstraction for any one person to

learn them all — both in the hardware and software. (In this way, traditional computers and deep

learning systems have something in common.) Yet, many can use computers productively, and

indeed, software is eating the world (Andreessen, 2011). The key to this is the power of abstraction:

once a module is defined and its API specified, it can be freely used and re-used on the basis of its

specification without the user needing to know exactly how it works. As a result, successively more

complex systems can be built, at ever-larger scales, and these systems can be made reliable as a

whole on the condition that they are reliable at each of their parts.

It is possible, though by no means trivial, to build powerful AI systems in the same spirit. While

pipeline-based NLP systems have fallen out of favor with the ease and effectiveness of end-to-end

learning, there is evidence that even when modern models encode a lot of information about language

that we think they should use for a task, they don’t use it — as with the success of syntactic probes

over pretrained representations (Hewitt and Manning, 2019) but the failure of fine-tuned models to

depend on syntax in the right ways for natural language inference (McCoy et al., 2019). Now there is

new potential for pipelines, as the power of pretrained language models allows for the development

of unprecedently robust submodules for simple tasks. For example, Ernst et al. (2022) introduce a

pipeline model for multi-document summarization which extracts individual propositions from each

document, clusters them using a proposition-level alignment submodule (Ernst et al., 2021), and then

uses sentence fusion to produce full summary sentences. Pretrained models like the Cross-Document

Language Model (Caciularu et al., 2021) and BART (Lewis et al., 2020) enable high-accuracy

pipeline components without the need for extremely large supervised training sets, and the use of

explicit clusters produces faithful-by-construction explanations for the summarization system’s

output. As another example, Chen et al. (2021) use submodules which convert question-answer pairs

to declarative form (Demszky et al., 2018) together with sentence decontextualization (Choi et al.,

2021) to leverage natural language inference models as verifiers for question answering. In such



27

cases, The creation of more simple, semantically-aware text manipulation modules can potentially

enable new, creative model pipelines for reliably performing complex tasks without the need for

combinatorially complex and comprehensive evaluation sets.

These models come pre-packaged with a theory of their task, which provides new ways of

verifying properties of their outputs: For example, each sentence in a summary produced by the

system of Ernst et al. (2022) can be traced directly to a set of propositions in the source documents,

so hallucination by the summarization system can be largely reduced to hallucination in the (much

simpler and easier to audit) sentence fusion module, or mistakes in the clustering step. Integrating

retrieval and copying directly into language models, as in GopherCite (Menick et al., 2022), is

another way of directly connecting the model’s output to external source material, grounding its

behavior in information that informs the user on how to act in light of its behavior.

2.7 Conclusion

I have presented a framework for thinking about meaningful progress in the construction of AI

systems that perform natural language understanding or, more generally, interface with humans and

the world. In particular, I lay out a set of principles for developing theories of machine behavior,

which can allow for successful communication between humans and these systems. This is not only

fundamental to achieving language understanding between humans and machines, but it is critical

to ensuring that the development and deployment of AI systems produces the intended outcomes.
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Chapter 3

TOWARDS SCALABLE THEORIES

Formal theories of language structure, world knowledge, and reasoning have long served a vital role

in the development of reliable NLP systems, whether as components in traditional NLP pipelines,

or as organizing elements for robustness and interpretability tests of end-to-end neural networks.

However, these theories are often challenging to theoretically specify with broad coverage, and

formal representations are difficult to reliably annotate at scale. As deep learning and large scale

continue to advance the capabilities of machine learning models, some argue that intelligence and

the world is simply too complex for us to assume we can capture it with domain theories (Sutton,

2019).

In this chapter, I present a framework for the development of scalable theories: systematic

accounts of aspects of intelligent behavior (e.g., ontologies and knowledge bases) which can

automatically scale up alongside large datasets and machine learning models. The key idea in my

proposal is an epistemological shift: in contrast with the theory-first “Rationalist” paradigms of

old-fashioned AI and the benchmarking-focused “Empiricist” paradigm of modern deep learning, I

propose embracing Pragmatism: an epistemology which employs theories as tools for articulating

and systematizing knowledge while prioritizing holding these theories accountable to useful data

external to the theory. The upshot is an approach to data collection and modeling which emphasizes

decoupling the phenomena represented in the data from the theories we use to reason about them.

Relegating the latter to modeling then allows us to use machine learning and automated methods to

develop of new explanatory theories of that data at large scale.
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3.1 Introduction

Formal representations of linguistic structure and meaning have long guided our understanding

of how to build natural language processing systems, for example, with syntactic and semantic

processing in the traditional NLP pipeline (Jurafsky and Martin, 2008). However, this approach has

always had limitations:

1. Fully specifying formal representations requires resolving challenging theoretical questions

which have been long contentious among linguists;

2. Reliably producing these representations with broad coverage using machine learning systems

has proven difficult, requiring new, expensive and difficult-to-annotate data for new domains

of text; and,

3. Even ostensibly correct linguistic representations are often difficult to effectively apply in

downstream tasks.

These challenges, combined with the unprecedented effectiveness of neural network function

approximators, have led to the proliferation of end-to-end neural network models which directly

perform end tasks without relying on intermediate representations of linguistic structure (He et al.,

2017a; Lee et al., 2017a; Seo et al., 2017, inter alia). Especially with additional improvements

from unsupervised pre-training (Peters et al., 2018; Devlin et al., 2019), these systems tend to

outperform earlier approaches across the board (Wang et al., 2019b,a). Still, they exhibit serious

gaps in generalization and robustness (Jia and Liang, 2017; Niven and Kao, 2019) and remain highly

uninterpretable.

To address these problems, formal theory, e.g., of linguistic structure, common sense, reasoning,

and world knowledge, can provide guiding frameworks for evaluation. For example, they inform

the design and construction of challenge sets (McCoy et al., 2019; Naik et al., 2018; Wang et al.,

2019b), measures of systematicity (Yanaka et al., 2020; Kim and Linzen, 2020), behavioral tests

(Linzen et al., 2016), and probing experiments (Liu et al., 2019a; Tenney et al., 2019b). As these
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theories allow us to characterize the generalization behaviors we desire, they are likely to play a

pivotal role in the design and training of highly general systems. However, the aforementioned

shortcomings also pose challenges in this setting: defining systematic generalization patterns can be

difficult, limiting scope and coverage; furthermore, performance on targeted tests (e.g., probing) is

not always reflective of a model’s sensitivity to relevant linguistic phenomena when deployed on

downstream tasks (McCoy et al., 2019).

In light of these issues, core improvements in formal theories of aspects of intelligent behavior

may yield boons for both the construction and evaluation of NLP systems. But the question remains

of how to achieve this: decades of work on resources like semantic ontologies (Baker et al., 1998a;

Palmer et al., 2005), commonsense knowledge bases (Lenat, 1995; Speer et al., 2017), and formal

reasoning systems (Lifschitz, 2008) have to a large extent been superseded in NLP based on deep

learning, displaced from model pipelines by end-to-end neural networks (Sutskever et al., 2014; Lee

et al., 2017a; Dozat and Manning, 2017; He et al., 2017a).

To understand this difficulty, I examine the recent history of NLP from the lens of epistemology.

Drawing from Church (2007)’s description of the field on a pendulum between Rationalism and

Empiricism (Section 3.2), I present an alternative in Pragmatism: a century-old epistemology which

we can use to characterize what it means for us to know something about language (Section 3.3).

This will serve as the basis for guiding principles for the development of scalable theories, moving

us towards a better understanding of the behaviors that can be built into AI systems.

3.2 The Rationalist–Empiricist Divide

Church (2007) describes the history of computational linguistics and AI on a pendulum, swinging

between Rationalist (roughly, theory-driven) and Empiricist (roughly, data-driven) paradigms every

20 years. Church lists the “swings” as follows (with my comments):

• 1950s: Empiricism (Shannon, Skinner, Firth, Harris) — information theory, psychological

behaviorism, early corpus linguistics

• 1970s: Rationalism (Chomsky, Minsky) — generative linguistics, logic-based AI
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• 1990s: Empiricism (IBM Speech Group, AT&T Bell Labs) — statistical NLP, machine

learning, modern distributional semantics

• 2010s: A Return to Rationalism?

As the reader may know, the predicted “Return to Rationalism” did not happen. NLP, for its part, is

more Empiricist than ever. Ironically, the Empiricism of 2007 is that of statistical modeling with

loglinear models in the NLP pipeline — by today’s standards, downright Rationalist in its adherence

to theoretical conceptions of the language system. In this section, I will discuss advantages and

disadvantages of each paradigm, recent developments in Empiricist NLP, and how we ended up

where we are today.

3.2.1 Rationalist Roots: What’s in a Theory?

The theory-first approach to creating knowledge embodied in these approaches is sometimes termed

Rationalist, a name that hearkens to the epistemological school of Rationalism — the most prominent

members including René Descartes (1596–1650) and Immanuel Kant (1724–1804) — centered

(roughly) around the ideas that reason is the primary source of knowledge and that indubitable truths

can be accessed through reason alone.1 The benefits of a theoretical approach are manifold; here I

discuss two.

Understanding Fundamental Limitations In computational linguistics and AI, Church (2007)

identifies Noam Chomsky and Marvin Minsky among prominent Rationalists. Among other

contributions, they are known for criticisms of the theoretical limits of statistical models: Chomsky

(1957) introduced a widely-known critique of n-gram language models, highlighting their inability

to correctly capture unbounded-length syntactic dependencies, and Minsky and Papert (1969)

showed that certain kinds of neural networks (which, functionally, act like linear separators) cannot

model the XOR function. More recently, critics such as Bender and Koller (2020), Marcus and

1The most famous of such purported truths is probably Descartes’s cogito ergo sum.
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Davis (2020), and Hofstadter (2018) take a more modern Rationalist angle, arguing that there

are theoretical limits to the capabilities of language models which are trained on large swathes

of text but lack real-world situational experience or formal reasoning capabilities. In all of these

cases, a theoretical understanding of language (i.e., as containing unbounded dependencies, and as

expressing intents grounded outside of language) or machine learning classifiers (i.e., as limited

to linearly separable classes for certain models, or lacking the systematic ability to manipulate

symbols) has been instrumental in identifying fundamental limitations of language technologies.

Capturing Deep Generalities Chomsky is known for regarding probabilistic models as giving

“no particular insight into some of the basic problems of syntactic structure” (Chomsky, 1957). The

problem that he identified was that some deep generalities of language — i.e., the unbounded length

of certain grammatical dependencies (such as subject agreement) — could not be systematically

captured in n-grams alone. The flip side of this observation is that formal theories can serve as

powerful tools for capturing and modeling such generalities.

Indeed, the development of linguistic theory is often centered around capturing remarkable

generalities. Chomsky’s early arguments captured systematic generalities in English syntax such as

the behaviors of unbounded-length agreement dependencies and extractions (Chomsky, 1957, 1965);

theories of semantic roles are often designed to capture and predict a wide range of behaviors in verbs’

syntactic realizations on the basis of their meanings (Dowty, 1991; Pustejovsky, 2011); Davidsonian

semantic representations use logical theory to capture regularities in entailment (Davidson, 1967);

and, there is a rich tradition in linguistics of making predictions about cross-linguistic universals

(e.g., ordering constraints) on the basis of theories of language structure (Cinque, 1999; Haspelmath,

2010; Stanojević and Steedman, 2021). When building NLP systems, we also wish for them to

capture important behavioral regularities about language. Leveraging a theory, either through direct

implementation or synthesizing data to provide inductive bias to a system, may seem like a natural

way to work towards such general capabilities.

The key to both aforementioned advantages of theory-driven thinking — understanding limi-

tations and unlocking generalities — is a mechanistic description (on some level) of the system
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being implemented, or more generally, a mentally-manipulable model of an aspect of (putatively)

intelligent behavior. While such theories clearly bring advantages, not all is rosy with Rationalism,

which has largely fell out of favor in NLP. So next, I will discuss what we have to learn from the

Empiricist developments in modern AI.

3.2.2 The Era of Empiricism

Empiricism is the school of thought that sensory data and experience are the primary sources

(and objects) of knowledge. Prominent early figures in the Empiricist tradition include Francis

Bacon (1561–1626) and David Hume (1711–1776). When applied to computational linguistics and

NLP, the Empiricist perspective is generally understood to mean that the knowledge or capabilities

possessed by system (such as a language processing model) should be assessed primarily by its

behavior on data rather than the form of the model itself, and to a large extent the acquisition of

knowledge by an artificial intelligence system should be done on the basis of data and experience.

This perspective dates back to the origins of AI and information theory, with Turing (1950)’s

Imitation Game and Shannon (1948)’s noisy channel model of communication. While the traditional

NLP pipeline may be counted in the Empiricist tradition, it contains Rationalist elements in its

reliance on linguistic theory to form its components. More recently, the field has taken a turn

further into Empiricism: On one hand, modeling is dominated by end-to-end neural networks where

the model’s form is only considered relevant insofar as it affects measurable behaviors on data

(Collobert and Weston, 2008; Wang et al., 2019b). On the other, the injection of knowledge and

capabilities into these models is increasingly done via exposure to a wide range of behavioral and

observational data, rather than theoretically-informed inductive bias (Mikolov et al., 2013; Peters

et al., 2018; Devlin et al., 2019; Brown et al., 2020).

The recent rise of Empiricism can to some extent be attributed to its agnosticism with respect to

underlying theories of the phenomena being modeled. Here I will review two arguments along these

lines.
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The Map is Not the Territory One useful perspective is provided by Norvig (2011), written

in reply to public remarks by Chomsky. Norvig highlights crucial flaws in Chomsky’s criticisms

of statistical modeling. In particular, Chomsky’s criticism about unbounded-length dependencies

applies to n-gram models, but not necessarily probabilistic models in general (for example, a

probabilistic context-free grammar can capture such dependencies). Furthermore, he assumes that

any probabilistic model would assign zero probability to unseen sentences — but this ignores the

existince of smoothing methods. Overall, Chomsky’s criticisms do not apply to the Empiricist

approach so much as particular, naïve modeling methods; in extending them to all of probabilistic

modeling, Chomsky argues only on the basis of a lack of imagination. Minsky and Papert (1969)’s

point about linear separators has suffered a similar fate: it no longer applies to the nonlinear neural

network models that are ubiquitous today. The more general problem is that theoretical arguments

about the limitations of a system only apply when the theory correctly describes that system; if the

methods of system construction change so that the theory no longer applies, the limitations are not

so fundamental.

In a similar vein, recent arguments on principle that language models cannot ‘understand’

language in any meaningful sense (Bender and Koller, 2020; Marcus and Davis, 2020) are received

with skepticism: it is not clear a priori how theoretical considerations regarding the nature of

meaning should imply constraints on the possible behaviors of a system. After all, any behavioral

test which could meaningfully expose the difference between ‘understanding’ and not could also

potentially be present in the training routine of such a model, and any difference which could not be

observed through behavioral testing seems like metaphysics (Michael, 2020). Overall, the victories

that Empiricism has had over these criticisms stem to a large extent from the flexibility that comes

from its lack of commitment to any particular theory or form by which to describe the world.

The World is Extremely Complex The flexibility of not committing to a theory, on that note, is

not just a practical advantage: Norvig (2011) describes it as an epistemic virtue, a more careful and

humble way of approaching the world than what he calls the “Platonism” of Chomsky. Along these

lines, Sutton (2019) remarks on a ‘Bitter Lesson’ from the history of AI:
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We have to learn the bitter lesson that building in how we think we think does not

work in the long run... the actual contents of minds are tremendously, irredeemably

complex; we should stop trying to find simple ways to think about the contents of minds,

such as simple ways to think about space, objects, multiple agents, or symmetries. All

these are part of the arbitrary, intrinsically-complex, outside world. They are not what

should be built in, as their complexity is endless; instead we should build in only the

meta-methods that can find and capture this arbitrary complexity.

In NLP, the hard-learned lesson that theoretical considerations from linguistics often do not con-

tribute to performance in the real world has been cast in stone as a famous quote by Fred Jelinek

from the 1980s.2 Training a general-purpose algorithm on data that directly represents the problem

one is trying to solve has, for the complex problems in AI and language, consistently been a more

reliable route to building a decent system than relying on theories which inevitably oversimplify the

problem or construe it in unhelpful ways. The upshot of these observations is general skepticism

on the part of some ML and NLP practitioners that formal theories, such as grammars, linguistic

ontologies, and explicit representations of knowledge and common sense, provide any meaningful

or useful explanation of language use.

3.2.3 The Perils of Empiricism

Yet, not all is well in the land of Empiricists. End-to-end neural network models near-uniformly

perform best on every test suite we have, especially when subjected to large-scale pretraining on

language text (Devlin et al., 2019; Lewis et al., 2020). But this success has exposed another set of

problems: the shortcomings of our evaluations and benchmarks. Before modern neural network

modeling, it was rare for a machine learning system to achieve performance metrics on par with

humans in complex language understanding (or linguistic structure prediction) tasks. Now, however,

it is quite common (Wang et al., 2019a). The problem is that these metrics are not robust: even

a model that achieves very high performance within its training distribution may be easily fooled

2No, I will not repeat it here. It has been said enough.
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or led astray with perturbations to its input that would not affect human judgment (Jia and Liang,

2017), or will have unacceptably degraded performance out of domain. The Empiricist answer to

this has been to incorporate more data in the pretraining process (Radford et al., 2019; Brown et al.,

2020), but there are at least two fundamental limitations to what this approach can achieve, which

we will discuss now.

Underspecification The first problem is underspecification: when building a system using ma-

chine learning, the only definition of the task that is accessible to the model is its training set; the

goal, of course, is to create a system that generalizes in desired ways on new data. Kharitonov and

Chaabouni (2021) found that training neural language models on deeply underspecified data leads to

strikingly different generalization behaviors, based on both model architecture and random chance.

But more concerningly, D’Amour et al. (2020) illustrate how this kind of underspecification is

rampant in machine learning pipelines: models trained using standard methods and datasets which

perform just as well in-distribution as each other may diverge wildly in the way that they generalize.

The problem is that fundamentally, a training set itself cannot suffice to specify all of the desired

behaviors of a model (i.e., on inputs outside that set), in the same way that a universal quantification

can not be proven with a set of examples. Said another way, it is impossible to distinguish annotation

artifacts in the training set (Gururangan et al., 2018) — which only apply to a subset of examples —

from generalizable reasoning rules, without some understanding of what generalizable reasoning

should look like. Building this understanding requires comprehensible ways of exhaustively carving

up the space of inputs into subsets, and characterizing a model’s desired behavior on each subset.

As is well known in the field of formal verification (Pierce et al., 2017), this is precisely the

advantage that a formal theory provides over example-based testing. In in the context of NLP, when

model failures are identified on out-of-distribution data, in order to understand them as systematic

problems rather than an ad-hoc or cherry-picked sets of mistakes, they must be characterized in

terms of a theory — whether this means a theory of the relationship between syntactic structure

and entailment (McCoy et al., 2019), compositionality of sentence meaning (Kim and Linzen,

2020), monotonicity (Yanaka et al., 2020), or other subsystems of language (Lake and Baroni,
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2018; Yanaka et al., 2021). In this context, what theory offers us is a way of making sense of our

measurements and assigning them meaning.

Intelligibility The second problem, broadly speaking, is intelligibility (Weld and Bansal, 2019).

In order to trust AI systems, be able to anticipate and correct their failures, and integrate them with

other software, we need to be able to reason effectively about their behavior. This, as Weizenbaum

(1976) points out, requires some kind of theory. In this vein, Olah et al. (2020) argue for reverse-

engineering trained neural networks back into mechanistic theories which can help us understand

their behavior. However, what is needed in order to correctly specify the behavior of an intelligible

model is a theory of its desired behavior — not just its existing behavior.

Overall, this leaves us in a very difficult situation. It seems that Empiricism alone — while it

scales incredibly well with complexity — is not sufficient for the development of robust, intelligible

systems, which requires a comprehensible theory of their desired behaviors. On the other hand,

Rationalism doesn’t scale to handle the sheer complexity of the domains we wish to model. Is there

a scalable approach to the development of comprehensible, robust theories? Perhaps there is, in an

alternative epistemology which we will explore next.

3.3 Prospects of Pragmatism: Building Theories that Work

An odd feature of the Rationalism/Empiricism dichotomy is that neither epistemology accurately

describes the pursuit of science in most fields either. In fields like physics, chemistry, and biology,

theoretical and experimental approaches are not in conflict; rather, they synergize and inform each

other, as theories are continually updated to align with new experimental data. To make sense of this,

we can turn to an epistemology inspired by how people actually operate in the world: Pragmatism.

Pragmatism is an epistemological framework which (roughly speaking) conceptualizes knowing

in terms of the actions that the knowledge licenses, i.e., by the predictions that follow from that

knowledge. Prominent Pragmatists include Charles Sanders Peirce (1839–1914) and William James

(1842–1910). Like Empiricism, Pragmatism embraces experience as the primary source from which

we can derive knowledge. Unlike Empiricists, however, Pragmatists such as James embrace the use
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of formal and linguistic categories as comprising the content of knowledge, on the basis of their

usefulness in making predictions and licensing actions (James, 1907). The Pragmatist conception

of truth differs from the Rationalist one in that it makes no claim to fundamentally describe the

form of the world: the Pragmatist search for truth is not a search for one true theory, but for an

ever-expanding set of theoretical tools and concepts that can be picked up and put down according

to the needs of the knower. In pithy terms, a Pragmatist might agree with the statistical aphorism

that that “All models are wrong; some are useful” (Box, 1976). Pragmatists such as James (1907)

claim that this perspective more accurately describes human behavior with respect to knowledge

(and indeed, the pursuit of science) than prior epistemologies.

Combining the core ideology of Pragmatism with observations from computational linguistics,

we can derive two guiding principles for the development of theories that may have prospective use

in NLP: decouple data from theory (Section 3.3.1), and make data reflect use (Section 3.3.2).

3.3.1 Decouple Data from Theory

One feature that distinguishes much NLP work (particularly involving linguistic structure) from

traditional sciences is the status of theory with respect to data. In most empirical sciences, data

takes the form of concrete measurements of the world, and the task of a theory is to explain those

measurements. In NLP, many benchmarks and datasets are constructed under the assumption of

a theory, whether it be one of syntactic structure (Marcus et al., 1993a; de Marneffe et al., 2021),

semantic structure (Palmer et al., 2005; Banarescu et al., 2013a), or some other task-specific labeling

scheme.

Having a theory, e.g., of syntactic or semantic structure, is useful in that it provides a straight-

forward way of annotating phenomena involving disambiguation of text — and syntactic and

semantic disambiguation is important for understanding language. However, errors in the theory and

inconsistencies in its annotation resulting from theoretical complexity of vagueness of its definitions

limit what can be learned by models, as human performance can be surprisingly low (Nangia and

Bowman, 2019) and high inter-annotator agreement is very challenging to achieve. For example,

the OntoNotes compendium of semantic annotations (Hovy et al., 2006) was presented as “The
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90% solution” because of 90% agreement rates — which imply that the dataset cannot validate

performance numbers any higher than 90%.

As another example, Palmer et al. (2006) find that fine-grained sense distinctions produce

considerable disagreement among humans annotating English text. But fixing the problem can’t

just be a matter of improving the sense inventory: they find that coarser-grained sense groups

designed to improve agreement lack the distinctions from the fine-grained senses that are necessary

for predicting how words should translate into typologically distant languages like Chinese and

Korean. When different tasks might require different theoretical distinctions, locking them in stone

at annotation time is a problem. This is especially true considering there will almost certainly

be missing categories: word sense annotations disambiguating only between the river and money

senses of the word bank will have no way of accounting for new senses or homonyms that come

along, e.g., if the bet (verbal) sense is encountered in new data. More generally, refining annotation

guidelines to increase agreement between annotators does not necessarily solve the problem, as the

extra assumptions built into the annotation process do not necessarily encode any more scientifically

meaningful information in the data — a problem known in the philosophy of science as the “problem

of theoretical terms” (Riezler, 2014).

Building a robust theory that can scale to unexpected phenomena and new data, and can be

adjusted for new tasks, requires theoretical agility which is precluded by the commitment that

comes with a theory-based annotation standard. An alternative is to directly annotate the phenomena

that the theory is meant to explain, and derive the theory on the basis of this data. This, for

example, is how work on grammar engineering is done in the DELPH-IN consortium (Bender and

Emerson, 2021). For each language, a broad-coverage Head-driven Phrase Structure Grammar

(HPSG) is maintained separately from its associated treebank, which is annotated not with full

syntactic analyses but with discriminants (Carter, 1997) such as prepositional phrase attachment

sites which constrain the set of possible parses in a way that is independent of the grammar. This

way, when the grammar is updated, the discriminants can be used to automatically update the

treebank accordingly while also providing considerable data to sanity-check the updated theory

(Oepen et al., 2004; Flickinger et al., 2017). Among examples that push the envelope further are
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the Decompositional Semantics Initiative (White et al., 2016) and MegaAttitude project (White

and Rawlins, 2016).3 In these projects, annotating large-scale corpora with the phenomena that are

posited to underly linguistic theories in question — such as Dowty (1991)’s proto-role properties, or

entailments corresponding to neg-raising (An and White, 2020) and projection (White and Rawlins,

2018) — has facilitated data-driven insights regarding argument selection (Reisinger et al., 2015a)

and lexically-specified syntactic subcategorization rules (White, 2021), as well as automatically

inducing lexicon-level ontologies of semantic roles (White et al., 2017a) and event structure (Gantt

et al., 2021) that are derived directly from the phenomena they are designed to explain.

The lesson of Empiricism is that for a model to work, it must be learned from data; while

Rationalism tells us that for a model to be intelligible and general, it must be grounded in theory. A

wealth of innovative prior work shows us that Pragmatism is possible: we can have both.

3.3.2 Make Data Reflect Use

Crafting a satisfying, data-driven theory of a few linguistic phenomena is not sufficient to serve as a

backbone for general language understanding systems. The second relevant lesson of Pragmatism is

that the model must be fit to its use. The approaches reviewed in Section 3.3.1 are, by and large,

targeted at theoretical questions in language syntax and semantics, e.g., regarding the nature of

syntactic structure across many languages (Bender et al., 2002) or the syntactic realization of a verb’s

arguments (Reisinger et al., 2015a). On the other hand, general-purpose language processing relies

on a huge amount of lexical and world knowledge and inferential ability which is outside the scope

of traditional linguistic theories. While general-purpose syntactic and semantic representations have

some direct uses in NLP end-tasks, such as for search and retrieval (Schäfer et al., 2011; Shlain

et al., 2020), their application in downstream tasks requiring higher-level reasoning or inference,

like reading comprehension, translation, and information extraction has been less fruitful. This is

at least in part because these theories are far insufficient to serve as mechanistic accounts of the

3https://decomp.io, https://megaattitude.io

https://decomp.io
https://megaattitude.io
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inferential phenomena which are required to perform those tasks.4

Constructing theories which can account for such phenomena is a monumental challenge. But it

is a challenge which, I argue, we must address if we want to pursue the goal of accurate, reliable,

and intelligible systems. Pragmatism tells us that the first step is to catalog the phenomena we

wish to explain in such a way that we can produce and maintain theories of these phenomena in an

agile way. This will require carefully carving up the space of phenomena in such a way that useful

abstractions can be designed to facilitate future progress (Dijkstra, 1974).

3.4 Scaling Theories with Data Simulation

Section 3.3 provided a general framework for building useful theories: annotate data in a theoretically-

minimal way, scope it carefully to reflect specific phenomena that we want to explain, and then

and automatically induce theories to explain those phenomenia using computational methods like

machine learning. But how does this method scale in practice? Even if the resulting theories are

high-quality, they still require annotated data, which limits their scope to orders of magnitude less

than what is leveraged by the pretrained generative models which are now the standard in NLP (Liu

et al., 2019b; Brown et al., 2020).

Black-Box Data Simulators This is where black-box models may actually be able to help with

the development of theory. Even if they are uninterpretable on their own, their high accuracy

and data efficiency under fine-tuning means they can be used as data simulators, generating

phenomenological data — potentially at a level of granularity or exhaustivity unobtainable from

humans — which can be fed into another, more interpretable algorithm to distill a theory from it.

Indeed, this is exactly the approach we will take in Chapter 6: we first train a black-box model to

generate questions in Question-Answer driven Semantic Role Labels, where each role is labeled

4There has been some recent success in inducing syntactic structures from free text data (Kim et al., 2019) using
the open-ended objective of optimizing likelihood; as many tasks can be framed in terms of the likelihood of text
continuations (Paperno et al., 2016; Radford et al., 2019; Brown et al., 2020), investigating the use of these structures
as well as those in other syntactically structured language models (Kuncoro et al., 2017, 2019) as a mechanism for
model intelligibility may be an interesting line of future work; however, their capacity to explain model behavior is
still bounded by the limits of syntax in explaining inferential behaviors.
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with a single question in the training data. But then we decode full question distributions from this

model, and induce an ontology of semantic roles by clustering arguments based on the overlap of

their question distributions.

It may seem like the use of a black-box model as a data simulator begs the question: if our

concern is that the black-box model isn’t learning the underlying function we hope it is, then doesn’t

using it to simulate data risk leading us to a theory of the wrong function? Actually, yes — but if the

theory is wrong, we can see it, and we can do something about it. If the results of theory induction

are not as expected (for example, the set of induced semantic roles looks wrong), it provides an

opportunity to do error analysis on the level of theory rather than individual examples. In particular,

examining the “wrong” parts of the resulting theory (e.g., induced semantic roles that don’t match

what we intuitively expect based on existing theory), and their connection to the training data, will

lead to one of the following outcomes:

• Systematic gaps in the data or mistakes in the model used for data simulation — which can

then be corrected. See Chapter 6 for an in-depth analysis of this kind.

• Mistakes in the modeling assumptions used in the theory induction algorithm — giving us

interesting information that we can use to improve our theories

• Mistakes in our intuition about what the theory should have looked like in the first place —

which means we’ve learned something.

All of these are positive outcomes for long-term progress.

Scaling in Complexity I have discussed the problem of scale in the sense of the size of the theory

— an issue with large knowledge bases or ontologies of linguistic structure. But this does not handle

the case of more complex tasks, with more nuanced relations between input and output (such as

open-ended question answering or common sense inference tasks). Since theoretical modeling

requires narrowly-scoped data (discussed more in Part II), we cannot necessarily expect to be able

to construct theories of such broad capabilities in the short term. However, if we carve up the space



43

of these tasks, start with theories of simple sub-phenomena of reading, inference, and language

understanding, then we may be able to bootstrap from these theories to then annotate and make

sense of more complex data. Constructing a “complete” or “true” theory of these tasks may indeed

be impossible even in principle, but — in the spirit of Pragmatism — that doesn’t mean we can’t

construct theories that are useful for understanding and controlling the behavior of such systems.

How the proposed framework would scale with task complexity is as-of-yet unclear. However,

scalable theories of narrow phenomena at least provide a step in the right direction.

3.5 Conclusion

In this chapter, I presented a program for the development of scalable theories, grounded in

reflections on recent developments in NLP from an epistemological lens. By applying the principles

of Pragmatism — scoping our data carefully to reflect specific phenomena of interest, and applying

computational methods to automatically induce theories of those phenomena — I hope that we can

make firm, if small, steps to create scientific progress in NLP.
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Part II

DATA: ANNOTATING NATURAL LANGUAGE WITH NATURAL
LANGUAGE

In Part I, I outlined the idea of scalable, data-driven theories of language behavior, and argued

for their central role in scientific progress in NLP. As discussed in Chapter 2, building AI systems

we can understand requires having theories of our models and data, as well as theories of the tasks

we wish to accomplish. The first step to developing these theories in an empirical, data-driven way

is to carefully choose the data (Chapter 3). That is what we will discuss in this part of the thesis. To

guide the data aspect of data-driven theory, I propose Four Principles of Scientific Data for NLP:

1. Theoretical minimalism. The data itself should encode as few theoretical assumptions as

possible. For example, if you wish to capture natural language syntax, you should directly

annotate the phenomena that syntactic theories are intended to explain rather than directly

annotating theoretical constructs like syntactic trees. This avoids the “problem of theoretical

terms” (Riezler, 2014) discussed in Chapter 3 and creates the space for an underlying theory

to explain this data.

2. Broad comprehensibility. In order to run data collection at large scale or on-demand in

new domains, it should be possible to recruit non-expert annotators and affordable to pay

them to label large amounts of data (e.g., through crowdsourcing), or it should be feasible to

automatically generate the data (e.g., with language models).

3. Annotation constraints. The output space of the task should not be too open-ended. Re-

quiring annotators to, for example, write whole sentences or stories without tight constraints

allows them to produce data from a convenience sample of the space, resulting in biased

data that doesn’t capture the full complexity of the phenomena of interest (Cai et al., 2017;
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Gururangan et al., 2018). Constraining their annotations to a specific space can help ensure

exhaustive coverage of the phenomena of interest, as Chapters 4 and 5 will show.

4. Narrow scope. The task should not capture too much complexity in the relationship between

input and output. Not only can this make it difficult for annotators to reliably produce high-

quality data, but it makes it more difficult to model the phenomena expressed in the data with

a comprehensible theory. We will see in Chapter 4 that allowing for too much complexity

makes modeling difficult, while in Part III I will show how more constrained data allows

for theory-driven modeling for use in end tasks and the automated induction of linguistic

structure.

The call for highly constrained and tightly scoped data collection may seem to contravene some

recent trends in deep learning for language. In particular, there have been huge documented

successes from large-scale training on heterogeneous corpora to perform highly open-ended tasks

like language modeling (Peters et al., 2018; Radford et al., 2019; Brown et al., 2020) and masked

language modeling (Devlin et al., 2019). I am not saying it has been a mistake to pursue such

directions. Models trained on large, open-ended corpora (like language models) can be very

powerful tools for a wide range of purposes, and indeed can synergize with my proposed approach

through their use as data simulators (see Section 3.4). What I am proposing is to also work towards

the development of data-driven theories of language tasks, which requires the kind of data work I

describe in this part of the thesis. My view is that this is essential to making scientific and long-term

progress in NLP, and will aid in the development of engineerable systems, particularly for tasks

where it is difficult or impossible to curate training data (see the introduction of Part III).

In Chapters 4 and 5, I describe two data annotation projects which aided in the development

of the Four Principles. This work is focused on annotations of shallow semantic structure: syntax,

semantic roles, and other predicate-argument structure relations expressed in text. The key strategy

in our methodology is to stay theoretically minimal and crowd-comprehensible by annotating

natural language with natural language. This line of work was pioneered by He et al. (2015b), who

propose Question-Answer driven Semantic Role Labeling (QA-SRL), a framework for annotating
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English verbal predicate-argument relations using simple, highly constrained question-answer pairs

(described in more detail in Chapter 5).

In subsequent years, we explored variations of this approach, which illustrate some of the basic

tensions between the Four Principles:

• He et al. (2016)5 explored a more constrained approach, targeting natural language syntax. We

introduced human-in-the-loop parsing, wherein we extract syntactic attachment ambiguities

from an existing parser’s n-best list of parse trees, convert these ambiguities into multiple-

choice questions, get crowdsourced workers to answer the questions, and then re-parse the

original sentence with constraints derived from the results. Testing this approach on the

English CCGbank (Hockenmaier and Steedman, 2007), our results are positive, but weak

— there was a very small improvement in parser performance. A core challenge was the

syntax–semantics mismatch, where workers would provide semantically correct answers to

questions which would correspond to the wrong syntactic attachment — for example, because

of coreference between noun phrases or head-finding choices in partitives. So even though

our annotation task was tightly scoped, our interpretation of the results required theoretical

assumptions about syntax which did not match up with the intuitions of non-expert workers.

See He et al. (2016) for more details.

• Michael et al. (2018), reproduced in Chapter 4, took the opposite tack. In human-in-the-

loop parsing, the annotation constraints and narrow task scope interfered with the first two

Principles of theoretical minimalism and broad comprehensibility. So in this project, we

broadened the scope of the task and sought to more directly capture annotator intuitions.

We solicited open-ended questions from annotators with the goal of having them capture

as many interesting semantic relationships as possible in the source sentence. Doing this

successfully required adding many careful constraints and incentives to the crowdsourcing

procedure, but we were careful to still allow for open-ended questions that expressed annotator

5I participated heavily in this project, experimenting with approaches for generating questions from sets of parse
trees in Combinatory Categorial Grammar (Steedman, 2000).
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creativity. The result was a dataset of “Question-Answer Meaning Representation” (QAMR)

annotations over English encyclopedic and news text covering many interesting phenomena.

However, achieving high recall of predicate-arugment relations was not economical (requiring

high annotation redundancy) and the resulting unstructured question-answer pairs were

hard to use downstream. The most successful use of QAMRs in follow-up work were

probably QuASE (He et al., 2020), which used QAMRs for pretraining, and Supervised

Open Information Extraction (Stanovsky et al., 2018), which converted the QAMR dataset

to Open Information Extraction tuples — but had to parse the questions with an existing

syntactic parser to do so. While an early version of this work (Michael et al., 2017) showed

how to use token statistics from the question–answer pairs to convert QAMR annotations

into graph-based meaning representations, this required highly redundant annotations (5

annotators per sentence) and the results only matched the reliability of the automated semantic

graph parsers of the time. The lesson from these results is that leaving the annotation space

too open and unconstrained leads to difficulties with recall and challenges with downstream

modeling and theory.

• FitzGerald et al. (2018), covered in Chapter 5, returned to QA-SRL. In the original QA-SRL

work (He et al., 2015b), annotators were individually trained and used an excel spreadsheet

with drop-down menus to specify the questions. In this work, we streamlined the annotation

process greatly and collected data using crowdsourcing. We automated quality control by

using a two-stage generate/validate crowdsourcing pipeline, and increased annotation speed,

reliability, and coverage using an autocomplete and auto-suggest system which keeps track

of the syntactic structure of QA-SRL questions as the annotator types, and uses it to suggest

completions as well as whole questions. We were able to gather data for over 64,000 sentences

with high coverage, as well as further increase coverage by bringing a model into the loop. In

terms of both semantic richness (i.e., inherent complexity) and annotation constraints, these

annotations are somewhere between our work on human-in-the-loop parsing and question-

answer meaning representations, showing the importance of striking an appropriate balance
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between the Four Principles.

Our results over the course of these projects suggests that we should search for tasks in a

“goldilocks zone”: Their scope should not be so constrained or beholden to prior theory as to be

unintuitive, but not so unconstrained that it is hard to get exhaustive and reliable annotation of

interesting phenomena. As annotation constraints depend on some prior theory of the phenomena to

be captured, these constraints need to be carefully chosen so as to minimize arbitrary assumptions

in the task setup and make sure the task is natural for annotators.

In the case of QA-SRL, the prior theory we incorporated is a small grammar fragment of English

encompassing QA-SRL questions. Our findings support that QA-SRL, with the annotation aids

developed in Chapter 5 (FitzGerald et al., 2018), strikes a good balance of the Four Principles. The

question remains, then: what can be done with this data? Can we use it to build data-driven theories,

and if so, how can such theories be used? We will return to these issues in Part III.
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Chapter 4

QUESTION-ANSWER MEANING REPRESENTATIONS

In this chapter, we introduce Question-Answer Meaning Representations (QAMRs), which represent

the predicate-argument structure of a sentence as a set of question-answer pairs. We develop a

crowdsourcing scheme to show that QAMRs can be labeled with very little training, and gather a

dataset of English QAMRs with over 5,000 sentences and 100,000 questions. A qualitative analysis

demonstrates that the crowd-generated question-answer pairs cover the vast majority of predicate-

argument relationships in existing datasets (including PropBank, NomBank, and QA-SRL) along

with many previously under-resourced ones, including implicit arguments and relations. We also

report baseline models for question generation and answering, and summarize a recent approach

for using QAMR labels to improve an Open IE system. These results suggest the freely available1

QAMR data and annotation scheme should support significant future work.2

4.1 Introduction

Predicate-argument relationships form a key part of sentential meaning representations, and support

answering basic questions such as who did what to whom. Resources for predicate-argument

structure are well-developed for verbs (e.g. PropBank (Palmer et al., 2005)) and there have been

efforts to study other parts of speech (e.g. NomBank (Meyers et al., 2004) and FrameNet (Baker

et al., 1998b)) and introduce whole-sentence structures (e.g. AMR (Banarescu et al., 2013b)).

However, highly skilled and trained annotators are required to label data within these formulations

for each new domain, and it takes significant effort to model each new type of relationship (e.g., noun

arguments in NomBank). We propose a new method to annotate relatively complete representations

1github.com/uwnlp/qamr

2This chapter is drawn from Michael et al. (2018).

github.com/uwnlp/qamr
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Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Who will join as nonexecutive director? - Pierre Vinken
What is Pierre’s last name? - Vinken
Who is 61 years old? - Pierre Vinken
How old is Pierre Vinken? - 61 years old
What will he join? - the board
What will he join the board as? - nonexecutive director
What type of director will Vinken be? - nonexecutive
What day will Vinken join the board? - Nov. 29

Figure 4.1: Example QAMR.

of the predicate-argument structure of a sentence, which can be done easily by non-experts.

We introduce Question-Answer Meaning Representations (QAMRs), which represent the

predicate-argument structure of a sentence as a set of question-answer pairs (see Figure 4.1).

Following the QA-SRL formalism (He et al., 2015a), each question-answer pair corresponds to a

predicate-argument relationship. There is no need for a carefully curated ontology and the labels

are highly interpretable. However, we differ from QA-SRL in focusing on all words in the sentence

rather than just verbs, and allowing free form questions instead of using templates.

The QAMR formulation provides a new way of thinking about predicate-argument structure.

Any form of sentence meaning—from a vector of real numbers to a logical form—should support

the challenge of determining which questions are answerable by the sentence, and what the answers

are. A QAMR sidesteps intermediate formal representations by surfacing those questions and

answers as the representation. As with any other representation, this can then be reprocessed for

downstream tasks. Indeed, the question-answer format facilitates reprocessing for tasks that are

similar in form, for example Open IE (see Section 4.4).

A key advantage of QAMRs is that they can be annotated with crowdsourcing. The main

challenge is coverage, as it can be difficult for a single annotator to write all possible QA pairs for a

sentence. Instead, we distribute the work between multiple annotators in a novel crowdsourcing

scheme, which we use to gather a dataset of over 100,000 QA pairs for 5,000 sentences in Newswire
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and Wikipedia domains.

Although QAMR questions’ free-form nature is crucial for our approach, it means that predicates

are not explicitly marked. However, with a simple predicate-finding heuristic, we can align QAMR

to PropBank, NomBank, and QA-SRL and show high coverage of predicate-argument structure,

including more than 90% of non-discourse relationships. Further analysis reveals that QAMRs also

capture many phenomena that are not modeled in traditional representations of predicate-argument

structure, including coreference, implicit and inferred arguments, and implicit relations (for example,

with noun adjuncts).

Finally, we report simple neural baselines for QAMR question generation and answering. We

also highlight a recent result (Stanovsky et al., 2018) showing that QAMR data can be used to

improve performance on a challenging task: Open Information Extraction. Together, these results

show that there is significant potential for follow up work on developing innovative uses of QAMR

and modeling their relatively comprehensive and complex predicate-argument relationships.

4.2 Crowdsourcing

We gather QAMRs with a two-stage crowdsourcing pipeline3 using monetary incentives and crowd-

driven quality control to ensure high coverage of predicate-argument structure. Generation workers

write QA pairs and validation workers answer or reject the generated questions. Full details of our

setup are given in Appendix A.

Generation Workers receive an English sentence with up to four target words. They are asked to

write as many QA pairs as possible containing each target word in the question or answer, subject to

light constraints (for example, the question must contain a word from the sentence and be answered

in the sentence, and they must highlight the answer in the sentence). Workers must write at least

one QA pair for each target word to receive the base pay of 20c. An increasing bonus of 3(k + 1)

cents is paid for each k-th additional QA pair they write that passes the validation stage.

3Built using Amazon Mechanical Turk: www.mturk.com

www.mturk.com
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Validation Workers receive a sentence and a batch of questions written by an annotator in the first

stage (with no marked target words or answers). The worker must mark each question as invalid or

redundant with another question, or highlight its answer in the sentence. Two workers validate and

answer each set of questions. They are paid a base rate of 10c for each batch, with an extra 2c for

each question past four.

Quality control Question writers are disqualified if the percentage of valid judgments on their

questions falls below 75%. Validators need to pass a qualification test and maintain above 70%

agreement with others, where overlapping answer spans are considered to agree.

Treatment of workers The minimum pay of 20c per sentence was chosen to yield a rough reward

of $12/hr for working at moderate pace (60s per sentence, subjectively judged by the authors).

Pay per-hour depended on worker pace and how exhaustively they annotated questions, with some

making more and some making less than this amount, and we take a few other measures to ensure

fair treatment of crowd workers. First, for the question generating task, we allow workers to start on

the task and immediately get paid by default, instead of withholding payment or asking them to

work for free in a trial phase. Then, if a worker is disqualified from further work, it is done using

Mechanical Turk’s qualification system rather than account blocks, which many workers report can

affect the status of their account and whether they can get work in the future.4 Finally, workers are

always paid for all of the work they provide.

4.2.1 Data Preparation and Annotation

We drew our data from 1,000 Wikinews articles from 2012–2015 and 1,000 articles from Wikipedia’s

1,000 core topics,5 partitioned by document into train, dev, and test, and preprocessed using the

Stanford CoreNLP tools (Manning et al., 2014). We also annotated 253 sentences from the Penn

4Blocks were used at the beginning of annotation, but after workers raised concerns, all blocks were lifted, we
replaced blocking with the qualification system, and we allowed all workers to try the task again.

5https://en.wikipedia.org/wiki/Wikipedia:1,000_core_topics

https://en.wikipedia.org/wiki/Wikipedia:1,000_core_topics


53

PTB Train Dev Test

Sentences 253 3,938 499 480
Annotators 5 1 3 3
QA Pairs 27,082 73,561 27,535 26,994
Filtered 18,789 51,063 19,069 18,959
Cost $2,862 $7,879 $2,919 $2,919
Cost/token $0.44 $0.08 $0.25 $0.25

(a) Summary of the data gathered.

0% 20% 40% 60% 80%

All agree

Two agree

None agree

At least one invalid

At least one redundant

74.9%

10.1%

11.3%

0.6%

3.2%

(b) Agreement and validation statistics. Answers
were considered to agree if their spans overlapped.
High agreement on answers indicates that questions
were generally interpretable and answers were con-
sistent.

Figure 4.2: Statistics of the QAMR dataset.

Treebank (Marcus et al., 1993b) chosen to overlap with existing resources for comparison (see

Section 4.3).

For each sentence, we group its non-stopwords sequentially into groups of 3 or 4 target words,

removing sentences with no content words. By presenting workers with nearly-contiguous lists of

target words, enforcing non-redundancy, and providing bonuses, we encourage exhaustiveness over

all possible QA pairs. By allowing the target word to appear in the question or the answer, we make

the requirements flexible enough that there is almost always some QA pair that can be written.

Figure 4.2b shows agreement statistics for question validation. We removed questions either

validator counted invalid or redundant, as well as questions not beginning with a wh-word,6 which

we found to be of low quality. We also annotated the partitions at different levels of redundancy to

allow for more exhaustive dev, test, and comparison sets. See Figure 4.2a for statistics.

4.3 Data Analysis

In this section, we show that QAMR has high coverage of predicate-argument structure and uses a

rich vocabulary to label fine-grained and implicit semantic relations.

6who, what, when, where, why, how, which, and whose
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Coverage To show that QAMR captures the same kinds of predicate-argument relations as existing

formalisms, we compare our data to PropBank, NomBank, and QA-SRL. Since predicates in the

questions are not explicitly marked, we use a simple predicate-finding heuristic to help align to

other formalisms: for each minimal span that appears in the QAMR questions and answers (i.e.,

none of its subspans appear independently of it elsewhere in the QAMR), we compute its predicate

score as the proportion of its appearances that are in a question rather than in an answer.7 We then

choose the span with the highest predicate score in each question as its predicate.

We measure recall on the shared Penn Treebank sentences for each resource by randomly

sampling n annotators out of 5 for each group of target words, which simulates the situation for the

training set (1 annotator) and the dev/test sets (3 annotators). For each n we took the mean of 10

runs. Full details of our comparison are in Appendix B.

Results are shown in Figure 4.3a. Single annotators cover over 60% of relationships, and cover-

age quickly increases with the number of annotators, reaching over 90% with all five. This shows

that QAMR’s representational capacity covers the vast majority of relevant predicate-argument

relations in existing resources. However, coverage in our training set is low due to low annotation

density.

For a qualitative analysis, we sample 150 QA pairs (see Table 4.1 for examples).8 Of our sample,

over 90% of question-answer pairs correspond to a predicate-argument relation expressed in the

sentence,9 including arguments and modifiers of nouns and verbs as well as relationships like those

within proper names (Table 4.1, ex. 2c, 3a) and coreference (ex. 3c, 4c). Questions that do not align

to predicate-argument structure often target shallow inferences (ex. 3b, 7c).

Rich vocabulary Annotators use the open question format to introduce a large vocabulary of

external phrases which do not appear in the sentence. Overall, 5,687 different external phrases

7This follows the intuition that predicates are more likely to appear in the question; for example, see join in Figure
4.1.

8This sample, and statistics for the remainder of this section, were taken from the filtered train and development
sets, with a total of about 70k QA pairs.

9We assume a QA pair targets the relation corresponding to the semantic role of the wh-word in the question.
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Figure 4.3: Presence of predicate-argument relations and novel phrases in QAMR.

are introduced (excluding stopwords), appearing 25,952 times in 38.7% of the questions (see

Figure 4.3b). These include typing words like state and country (Table 4.1, ex. 5), most often

directly after the wh-word, and relation-denoting phrases like work for (ex. 2b), last name (ex. 3a),

and victim (ex. 7a). Despite the open format, synonyms are not a major issue, obscuring the semantic

relation in only 2% of our sample (ex. 2a).

We also find verbal paraphrases of noun compounds, as proposed by Nakov (2008). For example,

where Gallup poll appears in the text, one annotator has written Who conducted the poll?, which

explicates the relationship between Gallup and poll. Similarly, Who received the bailouts? is written

for the phrase bank bailouts.

Semantics, not just syntax Only 63% of QA pairs characterize their predicate-argument relation

using the same syntactic relationship as in the sentence. 5% have answers coreferent with the syn-

tactic argument (Table 4.1, ex. 3c, 4c); 17% exhibit syntactic variation, using different prepositions

(ex. 4c, 6a), alternating between active and passive (ex. 1b), or changing between the noun and verb

form of the predicate (ex. 8a); 6% ask about implicit arguments (ex. 4b, 5c, 8b); and 6% ask about

inferred relations (ex. 3b).
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4.4 Models

To establish initial baselines, we apply existing neural models for QAMR question generation and

answering. We also briefly summarize a recent end task result, where QAMR annotations were used

to improve an Open IE system.

Question generation In question generation (QG), we learn a mapping from a sentence w to a

set of questions q1, . . . , qm. We enumerate pairs of words (wq, wa) from the sentence to seed the

generator. During training, outputs are questions q and inputs are tuples (w, wq, wa), where wq ∈ q

and wa is in q’s answer. We also add negative samples where the output is a special token and the

input has wq, wa that never appear together.

We use an encoder-decoder model with a copying mechanism (Zhou et al., 2017) to generate a

question from an input sentence with tagging features for part of speech, wq, and wa. At test time,

we run all pairs of content words (wi, wj) where |i − j| ≤ 5 through the model to yield a set of

questions. On the QAMR test set, this achieves 28% precision and 24% recall with fuzzy matching

(multi-BLEU10 > 0.8).

Question answering The format of QAMRs allows us to apply an existing question-answering

model (Seo et al., 2016) designed for the SQuAD (Rajpurkar et al., 2016) reading comprehension

task to answer QAMR questions. Training and testing with the SQuAD metrics on QAMR, the

model achieves 70.8% exact match and 79.7% F1 score. We further improve performance to 75.7%

exact match and 83.9% F1 by pooling our training set with the SQuAD training data. The relative

ease of QA in comparison to QG suggests that in QAMR, most of the information is contained in

the questions.

Open IE Finally, we also expect that the predicate-argument relationships represented in QAMRs

will be useful for many end tasks. Such a result was recently shown for Open IE (Stanovsky et al.,

2018), using our QAMR corpus. Open IE involves extracting tuples of natural language phrases

10An average of the BLEU1–BLEU4 scores.
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that express the propositions asserted by a sentence. They show that, using a syntactic dependency

parser, a QAMR can be converted to a list of Open IE extractions. Augmenting their training data

with a conversion of our QAMR dataset yields state-of-the-art performance on several Open IE

benchmarks (Stanovsky and Dagan, 2016b; Xu et al., 2013; de Sá Mesquita et al., 2013; Schneider

et al., 2017). The gains come largely from the extra extractions (e.g., with nominal predicates) that

QAMRs support over traditional resources focusing on verbal predications.

4.5 Related Work

In addition to the semantic formalisms (Palmer et al., 2005; Meyers et al., 2004; Banarescu et al.,

2013b; He et al., 2015a) we have already discussed, FrameNet (Baker et al., 1998b) also focuses

predicate-argument structure, but has more fine-grained argument types. Gerber and Chai (2010)

target implicit nominal arguments. Stanovsky and Dagan (2016a) annotate non-restrictive noun

phrase modifiers on top of QA-SRL. Other linguistically motivated annotation schemes include

UCCA (Abend and Rappoport, 2013a), HSPG treebanks (Flickinger et al., 2017), and the Groningen

meaning bank (Basile et al., 2012).

Crowdsourcing has also been applied to gather annotations of structure in the setup of multiple

choice questions, for example, for Dowty’s semantic proto-roles (Reisinger et al., 2015b; White

et al., 2016) and human-in-the-loop parsing and classification (He et al., 2016; Duan et al., 2016;

Werling et al., 2015), while Wang et al. (2017) use crowdsourcing with question-answer pairs to

annotate some PropBank roles directly. Our approach recovers paraphrases of noun compounds

similar to those crowdsourced by Nakov (2008).

More broadly, non-expert annotation has been used extensively to gather question-answer

pairs over natural language texts, for example in reading comprehension (Rajpurkar et al., 2016;

Richardson et al., 2013; Nguyen et al., 2016) and visual question answering (Antol et al., 2015).

However, while these treat question answering as an end task, we regard it as a representation of

predicate-argument structure, and focus annotators on a smaller selection of text (a few target words

in a single sentence, rather than a paragraph) aiming to achieve high coverage.
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4.6 Conclusion

QAMR provides a new way of thinking about meaning representation: using open-ended natural

language annotation to represent rich semantic structure. This paradigm allows for representing a

broad range of semantic phenomena with data easily gathered from native speakers. Our dataset has

already been used to improve the performance of an Open IE system, and how best to leverage the

data and model its complex phenomena is an open challenge which our annotation scheme could

support studying at a relatively large scale.

4.7 Notes

4.7.1 Crowdsourcing Details

In this section we provide full details of the data collection methodology described in Section 2. For

the exact text of the instructions shown to workers, and code to reproduce the annotation or demo

the interface, see github.com/uwnlp/qamr.

Stages Data collection proceeded in two stages: generation and validation. These were run as two

types of HITs (Human Intelligence Tasks) on the Amazon Mechanical Turk platform. Workers wrote

questions and answers for the generation task, and those questions would be immediately uploaded

as new HITs for the validation task, which ran concurrently. Two workers would validate each

question. The worker writing the question would be assessed based on the validators’ judgments,

and the validators would be assessed based on their agreement. In this way, the quality of workers

in either stage could be quickly assessed so spammers or low-quality workers could be disqualified

before causing much damage.

Question constraints In both stages, we define a valid question to

(1) contain at least one word from the sentence,

(2) be about the sentence’s meaning,

github.com/uwnlp/qamr
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(3) be answered obviously and explicitly in the sentence,

(4) not be a yes/no question, and

(5) not be redundant,

where we define two questions as being redundant by the informal criterion of “having the same

meaning” and the same answer. These requirements are illustrated with examples.

Workers in the generation phase are instructed only to write valid questions, while workers

in the validation phase are instructed only to answer valid questions (marking the rest invalid or

redundant).

When we ask that the question contains a word from the sentence, we allow for changing forms

of the word through inflectional or derivational morphology (with examples of both). The only

constraint on questions that is strictly enforced by the interface is a length limit of 50 characters.

Target words In the generation task, each sentence is presented to the worker with several

underlined target words. They are required to write at least one QA pair for each target word,

where the target word must appear either in the question or the answer. We choose sets of target

words by chunking consecutive words (ignoring stopwords) into groups of 3 or 4 (or fewer for very

short sentences). Because the target words shown to a single worker are close to each other—and

often share a constituent—it restricts the set of QA pairs they write to relate to a certain part of the

sentence. However, asking that the target word appears either in the question or the answer makes

it flexible enough so that the worker is almost never stuck with no reasonable question to write.

We identified this approach after some experimentation, finding that together with the monetary

incentives described below, it struck the appropriate balance of scope that was small enough to get

exhaustive annotation, but not so small that it cornered workers into writing awkward questions or

getting frustrated.

Interface In the generation stage, below the sentence, each target word is listed with a text field

below it where they write a question for that target word. While the text field is focused, they
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(a) Annotation interface for generation. (b) Annotation interface for validation.

Figure 4.4: Screenshots of the annotation interfaces.

highlight the answer tokens in the sentence using custom implemented highlighting functionality.

The highlighted tokens then appear next to the focused question. The answer tokens need not be a

contiguous span in our interface (though they almost always are in practice). Once a question is

written and answered, a new text field appears directly below it for another question, allowing the

annotator to write as many questions as they can. See Figure 4.4a for a screenshot of the generation

task interface.

In the validation stage, no target words are indicated to the user; they only see a list of questions

written in a single HIT by a worker in the generation stage. They use the arrow keys to switch

between the questions, and use the mouse to assess them: either highlighting the answer in the

sentence, clicking another question to mark the selected one redundant, or clicking the invalid

button to mark a question invalid. See Figure 4.4b.

Incentives and payment Base pay for the generation stage was 20c, with a bonus of 3(k + 1)

cents for each question beyond the number required (so, the first extra question would reward them

6c, the next 9c, and so on). However, their bonuses were only calculated based on the number
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of questions considered valid by annotators. So if a worker in the generation task wrote 2 extra

questions, but any 2 (or 3, or more) of their questions were judged invalid, then they would receive

no bonus.

In the validation stage, workers were paid 10c plus a bonus of 2c per question beyond four.

Quality control We used Mechanical Turk’s quality control mechanisms in several ways. First,

we used the built-in Locale qualification to limit the tasks to workers based in the United States

as a proxy for English proficiency. Second, we wrote a multiple-choice qualification test for the

validation task, which tested workers’ understanding of the definitions of question validity and

redundancy. Workers were required to get a score of 75% on this test before working on the

validation task.

Finally, we used Mechanical Turk’s built-in qualification mechanism to keep track of worker

accuracy and agreement ratings. Before working on either task, a worker would have to request

a qualification which stored their accuracy or agreement value. Then as they worked, it would be

updated over time and they could check its value in their Mechanical Turk account to see how they

were doing. In the generation task, accuracy was calculated as the proportion of all judgments

(aggregating those from both validators) that were not invalid or redundant, and accuracy had to

remain above 75% to avoid disqualification. In the validation task, agreement was calculated by

treating answer spans as agreeing if they had any overlap, and redundant judgments agreeing if their

targets had agreeing answer spans. A worker’s agreement had to stay above 70% for them to remain

qualified.

If a worker’s accuracy or agreement rating dropped within 5% of the threshold, the worker was

automatically sent an email with a warning and a list of common mistakes and tips they might use

to improve.

Implementation All of our code was written in Scala, using the Java AWS SDK on the backend

to interface with Mechanical Turk, Akka Actors and Akka HTTP to implement the web server and

quality control logic, and Scala.js with React to implement the user interface.
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Dataset Our dataset was gathered over the course of 1 month from 330 unique workers. See

Section 2.1 for details.

4.7.2 SRL Comparison

In this section we provide the full details of the comparison of QAMR to PropBank, NomBank, and

QA-SRL given in Section 3.

Preprocessing For each of these resources, there were certain predicate-argument relationships

that we filtered out of the comparison for being out of scope.

For PropBank, we filter out predicates and arguments that are auxiliary verbs, as well as reference

(R-) roles since aligning these properly is difficult and their function is primarily syntactic. We also

remove discourse (-DIS) arguments such as but and instead: these may be regarded as involved in

discourse structure separately from the predicate-argument structure we are investigating. 78% of

the original dependencies remain.

For NomBank, we also remove auxiliaries, and we remove arguments that include the predicate—

which are present for words like salesman and teacher—leaving 83% of the original dependencies.

For QA-SRL, we use all dependencies, and where multiple answers were provided to a question,

we take the union of the answer spans to be the argument span.

Alignment Because QAMR does not mark predicates explicitly, we use a simple predicate-finding

heuristic to align the QA pairs in a QAMR to the predicate-argument relations in each resource

independently.

For each QAMR, we identify every minimal span appearing in its questions and answers, i.e.,

a span from the sentence where none of its subspans appear independently of it in the QAMR.

We then calculate a predicate score for each span, as the proportion of times it appeared in a

question versus an answer. Then for each QA pair, we identify the span in the question with highest

predicate score as its predicate span, and the answer as its argument span. This is then aligned to

the predicate-argument arc in the chosen resource with the greatest non-zero argument overlap such
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that the predicate is contained within the question’s predicate span. If there is no such alignment,

we check for an opposite-direction alignment where the predicate is in the answer of a QA pair and

the argument completely contains the question’s predicate span.

Results See Section 3 for a description of the results. With 1 annotator, we get around 60% recall,

but it begins to level off over 85% with 3 annotators.

We manually examined 25 sentences to study sources of coverage loss in the 5-annotator case.

In comparison to PropBank and NomBank, the missing dependencies are due to missing QA pairs

(44%), mistakes in our alignment heuristic (28%), and subtle modifiers/idiomatic uses (28%). For

example, annotators sometimes overlook phrases such as so far (marked as a temporal modifier in

PropBank) or let’s (where ’s is marked as a core verbal argument). Comparing to QA-SRL, 60% of

the missed relations are inferred/ambiguous relations that are common in that dataset. Missed QA

pairs in QA-SRL account for another 20%.

In aggregate, these analyses show that the QAMR labels capture the same kinds of predicate-

argument structures as existing resources. However, while our development and test sets can be

expected to have reasonable coverage, where we have labels from only one annotator for each target

word (as in our training set), the recall low compared to expert-annotated structures, which may

pose challenges to learning.
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Sentence Ann. Question Answers

(1) Climate change affects distribution of
weeds, pests, and diseases.

(a) What affects distribution of diseases? Climate change

VAR (b) What is affected? distribution of... / distribution

(2) Baruch ben Neriah, Jeremiah’s scribe,
used this alphabet to create the later
scripts of the Old Testament.

SYN (a) Who wrote the scripts? Baruch ben Neriah

ROLE (b) Who did Baruch work for? Jeremiah
(c) What is old? Testament / the Old Testament

(3) Mahlunga has said he did nothing
wrong and Judge Horn said he “failed to
express genuine remorse”.

ROLE (a) What is the Judge’s last name? Horn

INF (b) Who doubted his remorse was genuine? Judge Horn
CO (c) Who didn’t express genuine remorse? Mahlunga

(4) In Byron’s later memoirs, “Mary
Chaworth is portrayed as the first object
of his adult sexual feelings.”

(a) Who is portrayed in the work? Mary Chaworth

IMP (b) Who was the object of his sexual feelings? Mary Chaworth
VAR (c) Who was Mary the object of sexual feelings

for?
Byron

(5) Volunteers are presently renovating
the former post office in the town
of Edwards, Mississippi, United States
for the doctor to have an office.

(a) What town is the post office in? Edwards
(b) What state is the post office in? Mississippi

IMP (c) What country are the volunteers renovating
in?

United States

VAR (d) What country is the city of Edwards in? United States

(6) The ossicles are the malleus (hammer),
incus (anvil), and the stapes (stirrup).

VAR (a) What is the malleus one of? The ossicles / ossicles

(7) Liam “had his whole life in front
of him”, said Detective Inspector
Andy Logan, who was the senior
investigator of his murder.

ROLE (a) Who is the murder victim Logan is investi-
gating?

Liam

ROLE (b) What rank of investigator is Andy Logan? Detective Inspector / senior
INF (c) Who was Detective Logan speaking about? Liam

(8) This cemetery dates from the time of
Menkaure (Junker) or earlier (Reisner),
and contains several stone-built mastabas
dating from as late as the 6th dynasty.

INF (a) How old are the stone-built mastabas? dating from as late as the 6th dynasty / from as
late as the 6th dynasty

IMP (b) What period was earlier than Menkaure? Reisner
(c) What dates from the 6th dynasty? mastabas / several stone-built mastabas

Table 4.1: Examples of question-answer pairs capturing various semantic relations, annotated with interesting phenom-
ena they exhibit: syntactic variation (VAR), synonym use (SYN), explicit role names for implicit relations (ROLE),
coreference (CO), implicit arguments (IMP), and inferred relations (INF).
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Chapter 5

CROWDSOURCING QA-SRL

In this chapter, we present a new large-scale corpus of Question-Answer driven Semantic Role

Labeling (QA-SRL) annotations, and the first high-quality QA-SRL parser. Our corpus, QA-SRL

Bank 2.0, consists of over 250,000 question-answer pairs for over 64,000 English sentences across

3 domains and was gathered with a new crowd-sourcing scheme that we show has high precision

and good recall at modest cost. We also present neural models for two QA-SRL subtasks: detecting

argument spans for a predicate and generating questions to label the semantic relationship. The

best models achieve question accuracy of 82.6% and span-level accuracy of 77.6% (under human

evaluation) on the full pipelined QA-SRL prediction task. They can also, as we show, be used gather

additional annotations at low cost.1

5.1 Introduction

Learning semantic parsers to predict the predicate-argument structures of a sentence is a long

standing, open challenge (Palmer et al., 2005; Baker et al., 1998b). Such systems are typically

trained from datasets that are difficult to gather,2 but recent research has explored training non-

experts to provide this style of semantic supervision (Abend and Rappoport, 2013a; Basile et al.,

2012; Reisinger et al., 2015b; He et al., 2015a). In this paper, we show for the first time that it is

possible to go even further by crowdsourcing a large scale dataset that can be used to train high

quality parsers at modest cost.

We adopt the Question-Answer-driven Semantic Role Labeling (QA-SRL) (He et al., 2015a)

1This chapter is based on FitzGerald et al. (2018). In this project, I led the crowdsourcing task design, data
collection, quality control, and data analysis.

2The PropBank (Bonial et al., 2010) and FrameNet (Ruppenhofer et al., 2016) annotation guides are 89 and 119
pages, respectively.
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In 1950 Alan M. Turing published "Computing machinery and 
intelligence" in Mind, in which he proposed that machines could be 

tested for intelligence using questions and answers.
Predicate Question Answer

published
1 Who published something? Alan M. Turing

2 What was published? “Computing Machinery and 
Intelligence”

3 When was something published? In 1950

proposed

4 Who proposed something? Alan M. Turing

5 What did someone propose? that machines could be tested for 
intelligent using questions and answers

6 When did someone propose something? In 1950

tested
7 What can be tested? machines
8 What can something be tested for? intelligence
9 How can something be tested? using questions and answers

using
10 What was being used? questions and answers
11 Why was something being used? tested for intelligence

Figure 5.1: An annotated sentence from our dataset. Question 6 was not produced by crowd workers in the initial
collection, but was produced by our parser as part of Data Expansion (see Section 5.5.)

annotation scheme. QA-SRL is appealing because it is intuitive to non-experts, has been shown to

closely match the structure of traditional predicate-argument structure annotation schemes (He et al.,

2015a), and has been used for end tasks such as Open IE (Stanovsky and Dagan, 2016b). In QA-SRL,

each predicate-argument relationship is labeled with a question-answer pair (see Figure 5.1). He

et al. (2015a) showed that high precision QA-SRL annotations can be gathered with limited training

but that high recall is challenging to achieve; it is relatively easy to gather answerable questions, but

difficult to ensure that every possible question is labeled for every verb. For this reason, they hired

and trained hourly annotators and only labeled a relatively small dataset (3000 sentences).

Our first contribution is a new, scalable approach for crowdsourcing QA-SRL. We introduce

a streamlined web interface (including an auto-suggest mechanism and automatic quality control

to boost recall) and use a validation stage to ensure high precision (i.e. all the questions must be

answerable). With this approach, we produce QA-SRL Bank 2.0, a dataset with 133,479 verbs from

64,018 sentences across 3 domains, totaling 265,140 question-answer pairs, in just 9 days. Our
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analysis shows that the data has high precision with good recall, although it does not cover every

possible question. Figure 5.1 shows example annotations.

Using this data, our second contribution is a comparison of several new models for learning a

QA-SRL parser. We follow a pipeline approach where the parser does (1) unlabeled span detection

to determine the arguments of a given verb, and (2) question generation to label the relationship

between the predicate and each detected span. Our best model uses a span-based representation

similar to that introduced by Lee et al. (2016) and a custom LSTM to decode questions from a

learned span encoding. Our model does not require syntactic information and can be trained directly

from the crowdsourced span labels.

Experiments demonstrate that the model does well on our new data, achieving up to 82.2% span-

detection F1 and 47.2% exact-match question accuracy relative to the human annotations. We also

demonstrate the utility of learning to predict easily interpretable QA-SRL structures, using a simple

data bootstrapping approach to expand our dataset further. By tuning our model to favor recall, we

over-generate questions which can be validated using our annotation pipeline, allowing for greater

recall without requiring costly redundant annotations in the question writing step. Performing this

procedure on the training and development sets grows them by 20% and leads to improvements

when retraining our models. Our final parser is highly accurate, achieving 82.6% question accuracy

and 77.6% span-level precision in an human evaluation. Our data, code, and trained models will be

made publicly available.3

5.2 Data Annotation

A QA-SRL annotation consists of a set of question-answer pairs for each verbal predicate in a

sentence, where each answer is a set of contiguous spans from the sentence. QA-SRL questions are

defined by a 7-slot template shown in Table 5.1. We introduce a crowdsourcing pipeline to collect

annotations rapidly, cheaply, and at large scale.

3http://qasrl.org
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Wh Aux Subj Verb Obj Prep Misc
Who blamed someone
What did someone blame something on
Who refused to do something
When did someone refuse to do something
Who might put something somewhere
Where might someone put something

Table 5.1: Example QA-SRL questions, decomposed into their slot-based representation. See He et al. (2015a) for the
full details. All slots draw from a small, deterministic set of options, including verb tense (present, pastparticiple,
etc.) Here we have replaced the verb-tense slot with its conjugated form.

Pipeline Our crowdsourcing pipeline consists of a generation and validation step. In the generation

step, a sentence with one of its verbs marked is shown to a single worker, who must write QA-SRL

questions for the verb and highlight their answers in the sentence. The questions are passed to the

validation step, where n workers answer each question or mark it as invalid. In each step, no two

answers to distinct questions may overlap with each other, to prevent redundancy.

Instructions Workers are instructed that a valid question-answer pair must satisfy three criteria: 1)

the question is grammatical, 2) the question-answer pair is asking about the time, place, participants,

etc., of the target verb, and 3) all correct answers to each question are given.

Autocomplete We provide an autocomplete drop-down to streamline question writing. Autocom-

plete is implemented as a Non-deterministic Finite Automaton (NFA) whose states correspond to

the 7 QA-SRL slots paired with a partial representation of the question’s syntax. We use the NFA to

make the menu more compact by disallowing obviously ungrammatical combinations (e.g., What

did been appeared?), and the syntactic representation to auto-suggest complete questions about

arguments that have not yet been covered (see Figure 5.2). The auto-suggest feature significantly

reduces the number of keystrokes required to enter new questions after the first one, speeding up the

annotation process and making it easier for annotators to provide higher recall.
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Figure 5.2: Interface for the generation step. Autocomplete shows
completions of the current QA-SRL slot, and auto-suggest shows
fully-formed questions (highlighted green) based on the previous
questions.

Payment, quality control, and worker

treatment Generation pays 5c for the

first QA pair (required), plus 5c, 6c, etc.

for each successive QA pair (optional), to

boost recall. The validation step pays 8c

per verb, plus a 2c bonus per question be-

yond four. Generation workers must write

at least 2 questions per verb and have 85%

of their questions counted valid, and val-

idators must maintain 85% answer span

agreement with others, or they are disqual-

ified from further work. A validator’s answer is considered to agree with others if their answer span

overlaps with answer spans provided by a majority of workers.

The minimum pay of 8–10c per sentence was chosen to yield a rough reward of $12/hr for

working at moderate pace (30s per sentence for question generation, subjectively judged by the

authors). Pay per-hour depended on worker pace, with some making more and some making less

than this amount, and we take a few other measures to ensure fair treatment of crowd workers. First,

for the question generating task, we allow workers to start on the task and immediately get paid by

default, instead of withholding payment or asking them to work for free in a trial phase. Then, if a

worker is disqualified from further work, it is done using Mechanical Turk’s qualification system

rather than account blocks, which many workers report can affect the status of their account and

whether they can get work in the future. Finally, workers are always paid for all of the work they

provide. Unlike the generation phase, we used a qualification test for the validation phase because

the validation step determined the bonuses sent to generation workers. This meant that low-quality

validators or spammers could affect the pay of generation workers by answering “Invalid” to every

question for a short while before getting disqualified.
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Wikipedia Wikinews Science

Sentences 15,000 14,682 46,715
Verbs 32,758 34,026 66,653

Questions 75,867 80,081 143,388
Valid Qs 67,146 70,555 127,455

(a) Statistics for the dataset with questions written
by workers across three domains.

P R F

He et al. (2015a) 97.5 86.6 91.7
This work 95.7 72.4 82.4
This work (unfiltered) 94.9 85.4 89.9

(b) Precision and recall of our annotation pipeline
on a merged and validated subset of 100 verbs. The
unfiltered number includes questions that some val-
idators marked as invalid.

Table 5.2: Dataset statistics and coverage of questions.

Preprocessing We use the Stanford CoreNLP tools (Manning et al., 2014) for sentence segmen-

tation, tokenizing, and POS-tagging. We identify verbs by POS tag, with heuristics to filter out

auxiliary verbs while retaining non-auxiliary uses of “have” and “do.” We identify conjugated forms

of each verb for the QA-SRL templates by finding them in Wiktionary.4

Dataset We gathered annotations for 133,479 verb mentions in 64,018 sentences (1.27M tokens)

across 3 domains: Wikipedia, Wikinews, and science textbook text from the Textbook Question

Answering (TQA) dataset (Kembhavi et al., 2017). We partitioned the source documents into train,

dev, and test, sampled paragraph-wise from each document with an 80/10/10 split by sentence.

Annotation in our pipeline with n = 2 validators took 9 days on Amazon Mechanical Turk.5

1,165 unique workers participated, annotating a total of 299,308 questions. Of these, 265,140 (or

89%) were considered valid by both validators, for an average of 1.99 valid questions per verb and

4.14 valid questions per sentence. See Table 5.2a for a breakdown of dataset statistics by domain.

The total cost was $43,647.33, for an average of 32.7c per verb mention, 14.6c per question, or

16.5c per valid question. For comparison, He et al. (2015a) interviewed and hired contractors to

annotate data at much smaller scale for a cost of about 50c per verb. Our annotation scheme is

cheaper, far more scalable, and provides more (though noisier) supervision for answer spans.

4www.wiktionary.org
5www.mturk.com
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To allow for more careful evaluation, we validated 5,205 sentences at a higher density (up to

1,000 for each domain in dev and test), re-running the generated questions through validation with

n = 3 for a total of 6 answer annotations for each question.

Quality Judgments of question validity had moderate agreement. About 89.5% of validator

judgments rated a question as valid, and the agreement rate between judgments of the same question

on whether the question is invalid is 90.9%. This gives a Fleiss’s Kappa of 0.51. In the higher-density

re-run, validators were primed to be more critical: 76.5% of judgments considered a question valid,

and agreement was at 83.7%, giving a Fleiss’s Kappa of 0.55.

Despite being more critical in the denser annotation round, questions marked valid in the original

dataset were marked valid by the new annotators in 86% of cases, showing our data’s relatively

high precision. The high precision of our annotation pipeline is also backed up by our small-scale

manual evaluation (see Coverage below).

Answer spans for each question also exhibit good agreement. On the original dataset, each

answer span has a 74.8% chance to exactly match one provided by another annotator (up to two),

and on the densely annotated subset, each answer span has an 83.1% chance to exactly match one

provided by another annotator (up to five).

Coverage Accurately measuring recall for QA-SRL annotations is an open challenge. For example,

question 6 in Figure 5.1 reveals an inferred temporal relation that would not be annotated as part of

traditional SRL. Exhaustively enumerating the full set of such questions is difficult, even for experts.

However, we can compare to the original QA-SRL dataset (He et al., 2015a), where Wikipedia

sentences were annotated with 2.43 questions per verb. Our data has lower—but loosely comparable—

recall, with 2.05 questions per verb in Wikipedia.

In order to further analyze the quality of our annotations relative to (He et al., 2015a), we

reannotate a 100-verb subset of their data both manually (aiming for exhaustivity) and with our

crowdsourcing pipeline. We merge the three sets of annotations, manually remove bad questions

(and their answers), and calculate the precision and recall of the crowdsourced annotations and
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those of He et al. (2015a) against this pooled, filtered dataset (using the span detection metrics

described in Section 5.4). Results, shown in Table 5.2b, show that our pipeline produces comparable

precision with only a modest decrease in recall. Interestingly, re-adding the questions rejected in

the validation step greatly increases recall with only a small decrease in precision, showing that

validators sometimes rejected questions considered valid by the authors. However, we use the

filtered dataset for our experiments, and in Section 5.5, we show how another crowdsourcing step

can further improve recall.

5.3 Models

Given a sentence X = x0, . . . , xn, the goal of a QA-SRL parser is to produce a set of tuples

(vi,Qi,Si), where v ∈ {0, . . . , n} is the index of a verbal predicate, Qi is a question, and Si ∈

{(i, j) | i, j ∈ [0, n], j ≥ i} is a set of spans which are valid answers. Our proposed parsers

construct these tuples in a three-step pipeline:

1. Verbal predicates are identified using the same POS-tags and heuristics as in data collection

(see Section 5.2).

2. Unlabeled span detection selects a set Sv of spans as arguments for a given verb v.

3. Question generation predicts a question for each span in Sv. Spans are then grouped by

question, giving each question a set of answers.

We describe two models for unlabeled span detection in section 5.3.1, followed by question

generation in section 5.3.2. All models are built on an LSTM encoding of the sentence. Like He

et al. (2017b), we start with an input Xv = {x0 . . .xn}, where the representation xi at each time

step is a concatenation of the token wi’s embedding and an embedded binary feature (i = v)

which indicates whether wi is the predicate under consideration. We then compute the output

representation Hv = BILSTM(Xv) using a stacked alternating LSTM (Zhou and Xu, 2015a)

with highway connections (Srivastava et al., 2015) and recurrent dropout (Gal and Ghahramani,

2016). Since the span detection and question generation models both use an LSTM encoding,

this component could in principle be shared between them. However, in preliminary experiments

we found that sharing hurt performance, so for the remainder of this work each model is trained
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independently.

5.3.1 Span Detection

Given an encoded sentence Hv, the goal of span detection is to select the spans Sv that correspond

to arguments of the given predicate. We explore two models: a sequence-tagging model with BIO

encoding, and a span-based model which assigns a probability to every possible span.

BIO Sequence Model

Our BIO model predicts a set of spans via a sequence y where each yi ∈ {B, I,O}, representing a

token at the beginning, interior, or outside of any span, respectively. Similar to He et al. (2017b), we

make independent predictions for each token at training time, and use Viterbi decoding to enforce

hard BIO-constraints6 at test time. The resulting sequences are in one-to-one correspondence with

sets Sv of spans which are pairwise non-overlapping. The locally-normalized BIO-tag distributions

are computed from the BiLSTM outputs Hv = {hv0, . . . ,hvn}:

p(yt | x) ∝ exp(w⊺
tagMLP(hvt) + btag) (5.1)

Span-based Model

Our span-based model makes independent binary decisions for all O(n2) spans in the sentence.

Following Lee et al. (2016), the representation of a span (i, j) is the concatenation of the BiLSTM

output at each endpoint:

svij = [hvi,hvj]. (5.2)

The probability that the span is an argument of predicate v is computed by the sigmoid function:

p(yij | Xv) = σ(w⊺
spanMLP(svij) + bspan) (5.3)

At training time, we minimize the binary cross entropy summed over all n2 possible spans, counting

a span as a positive example if it appears as an answer to any question.

6E.g., an I-tag should only follow a B-tag.
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At test time, we choose a threshold τ and select every span that the model assigns probability

greater than τ , allowing us to trade off precision and recall.

5.3.2 Question Generation

We introduce two question generation models. Given a span representation svij defined in Sec-

tion 5.3.1, our models generate questions by picking a word for each question slot (see Section 5.2).

Each model calculates a joint distribution p(y | Xv, svij) over values y = (y1, . . . , y7) for the

question slots given a span svij , and is trained to minimize the negative log-likelihood of gold slot

values.

Local Model

The local model predicts the words for each slot independently:

p(yk | Xv, svij) ∝ exp(w⊺
kMLP(svij) + bk). (5.4)

Sequence Model

The sequence model uses the machinery of an RNN to share information between slots. At each

slot k, we apply a multiple layers of LSTM cells:

hl,k, cl,k = LSTMCELLl,k(hl−1,k,hl,k−1, cl,k−1) (5.5)

where the initial input at each slot is a concatenation of the span representation and the embedding

of the previous word of the question: h0,k = [svij;yk−1]. Since each question slot predicts from a

different set of words, we found it beneficial to use separate weights for the LSTM cells at each

slot k. During training, we feed in the gold token at the previous slot, while at test time, we use the

predicted token. The output distribution at slot k is computed via the final layers’ output vector hLk:

p(yk | Xv, svij) ∝ exp(w⊺
kMLP(hLk) + bk) (5.6)
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5.4 Initial Results

Automatic evaluation for QA-SRL parsing presents multiple challenges. In this section, we introduce

automatic metrics that can help us compare models. In Section 5.6, we will report human evaluation

results for our final system.

5.4.1 Span Detection

Metrics We evaluate span detection using a modified notion of precision and recall. We count

predicted spans as correct if they match any of the labeled spans in the dataset. Since each predicted

span could potentially be a match to multiple questions (due to overlapping annotations) we map

each predicted span to one matching question in the way that maximizes measured recall using

maximum bipartite matching. We use both exact match and intersection-over-union (IOU) greater

than 0.5 as matching criteria.

Results Table 5.3a shows span detection results on the development set. We report results for

the span-based models at two threshold values τ : τ = 0.5, and τ = τ ∗ maximizing F1. The

span-based model significantly improves over the BIO model in both precision and recall, although

the difference is less pronounced under IOU matching.

5.4.2 Question Generation

Metrics Like all generation tasks, evaluation metrics for question generation must contend with

the fact that there are in general multiple possible valid questions for a given predicate-argument

pair. For instance, the question “Who did someone blame something on?” may be rephrased as

“Who was blamed for something?” However, due to the constrained space of possible questions

defined by QA-SRL’s slot format, accuracy-based metrics can still be informative. In particular,

we report the rate at which the predicted question exactly matches the gold question, as well as

a relaxed match where we only count the question word (WH), subject (SBJ), object (OBJ) and

Miscellaneous (Misc) slots (see Table 5.1). Finally, we report average slot-level accuracy.
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Exact Match P R F

BIO 69.0 75.9 72.2
Span (τ = 0.5) 81.7 80.9 81.3
Span (τ = τ∗) 80.0 84.7 82.2

IOU ≥ 0.5 P R F

BIO 80.4 86.0 83.1
Span (τ = 0.5) 87.5 84.2 85.8
Span (τ = τ∗) 83.8 93.0 88.1

(a) Results for Span Detection on the dense develop-
ment dataset. Span detection results are given with
the cutoff threshold τ at 0.5, and at the value which
maximizes F-score. We report precision, recall and
F-score both with exact span matching and matches
where the intersection over union (IOU) is ≥ 0.5.

EM PM SA

Local 44.2 62.0 83.2
Seq. 47.2 62.3 82.9

(b) Question Generation results on the dense de-
velopment set. EM - Exact Match accuracy, PM -
Partial Match Accuracy, SA - Slot-level accuracy

P R F

Span + Local 37.8 43.7 40.6
Span + Seq. (τ = 0.5) 39.6 45.8 42.4

(c) Joint span detection and question generation
results on the dense development set, using exact-
match for both spans and questions.

Table 5.3: Experimental results on the dense development set for our initial trained models.

Results Table 5.3b shows the results for question generation on the development set. The

sequential model’s exact match accuracy is significantly higher, while word-level accuracy is

roughly comparable, reflecting the fact that the local model learns the slot-level posteriors.

5.4.3 Joint results

Table 5.3c shows precision and recall for joint span detection and question generation, using exact

match for both. This metric is exceedingly hard, but it shows that almost 40% of predictions are

exactly correct in both span and question. In Section 5.6, we use human evaluation to get a more

accurate assessment of our model’s accuracy.

5.5 Data Expansion

Since our trained parser can produce full QA-SRL annotations, its predictions can be validated

by the same process as in our original annotation pipeline, allowing us to focus annotation efforts

towards filling potential data gaps.
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By detecting spans at a low probability cutoff, we over-generate QA pairs for already-annotated

sentences. Then, we filter out QA pairs whose answers overlap with answer spans in the existing

annotations, or whose questions match existing questions. What remains are candidate QA pairs

which fill gaps in the original annotation. We pass these questions to the validation step of our

crowdsourcing pipeline with n = 3 validators, resulting in new labels.

We run this process on the training and development partitions of our dataset. For the devel-

opment set, we use the trained model described in the previous section. For the training set, we

use a relaxed version of jackknifing, training 5 models over 5 different folds. We generate 92,080

questions at a threshold of τ = 0.2. Since in this case many sentences have only one question, we

restructure the pay to a 2c base rate with a 2c bonus per question after the first (still paying no less

than 2c per question).

Data statistics 46,017 (50%) of questions run through the expansion step were considered valid

by all three annotators. In total, after filtering, the expansion step increased the number of valid

questions in the train and dev partitions by 20%. However, for evaluation, since our recall metric

identifies a single question for each answer span (via bipartite matching), we filter out likely question

paraphrases by removing questions in the expanded development set whose answer spans have

two overlaps with the answer spans of one question in the original annotations. After this filtering,

the expanded development set we use for evaluation has 11.5% more questions than the original

development set.

The total cost including MTurk fees was $8,210.66, for a cost of 8.9c per question, or 17.8c

per valid question. While the cost per valid question was comparable to the initial annotation, we

gathered many more negative examples (which may serve useful in future work), and this method

allowed us to focus on questions that were missed in the first round and improve the exhaustiveness

of the annotation (whereas it is not obvious how to make fully crowdsourced annotation more

exhaustive at a comparable cost per question).
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Exact Match P R F AUC

Original 80.8 86.8 83.7 .906
Expanded 82.9 86.4 84.6 .910

IOU ≥ 0.5 P R F AUC

Original 87.1 93.2 90.1 .946
Expanded 87.9 93.1 90.5 .949

(a) Span detection results with τ∗.

EM PM SA

Original 50.5 64.4 84.1
Expanded 50.8 64.9 84.1

(b) Question generation.

P R F

Original 47.5 46.9 47.2
Expanded 44.3 55.0 49.1

(c) Joint span detection and question generation
with τ = 0.5.

Table 5.4: Results on the expanded development set comparing the full model trained on the original data, and with the
expanded data.

Retrained model We retrained our final model on the training set extended with the new valid

questions, yielding modest improvements on both span detection and question generation in the

development set (see Table 5.4). The span detection numbers are higher than on the original dataset,

because the expanded development data captures true positives produced by the original model (and

the resulting increase in precision can be traded off for recall as well).

5.6 Final Evaluation

We use the crowdsourced validation step to do a final human evaluation of our models. We test 3

parsers: the span-based span detection model paired with each of the local and sequential question

generation models trained on the initial dataset, and our final model (span-based span detection and

sequential question generation) trained with the expanded data.

Methodology On the 5,205 sentence densely annotated subset of dev and test, we generate QA-

SRL labels with all of the models using a span detection threshold of τ = 0.2 and combine the

questions with the existing data. We filter out questions that fail the autocomplete grammaticality

check (counting them invalid) and pass the data into the validation step, annotating each question
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to a total of 6 validator judgments. We then compute question and span accuracy as follows: A

question is considered correct if 5 out of 6 annotators consider it valid, and a span is considered

correct if its generated question is correct and the span is among those selected for the question by

validators. We rank all questions and spans by the threshold at which they are generated, which

allows us to compute accuracy at different levels of recall.

Results Figure 5.3 shows the results. As expected, the sequence-based question generation models

are much more accurate than the local model; this is largely because the local model generated many

questions that failed the grammaticality check. Furthermore, training with our expanded data results

in more questions and spans generated at the same threshold. If we choose a threshold value which

gives a similar number of questions per sentence as were labeled in the original data annotation (2

questions / verb), question and span accuracy are 82.64% and 77.61%, respectively.

Table 5.5 shows the output of our best system on 3 randomly selected sentences from our

development set (one from each domain). The model was overall highly accurate—only one

question and 3 spans are considered incorrect, and each mistake is nearly correct,7 even when the

sentence contains a negation.

5.7 Related Work

Resources and formalisms for semantics often require expert annotation and underlying syntax

(Palmer et al., 2005; Baker et al., 1998b; Banarescu et al., 2013c). Some more recent semantic

resources require less annotator training, or can be crowdsourced (Abend and Rappoport, 2013a;

Reisinger et al., 2015b; Basile et al., 2012; Michael et al., 2018). In particular, the original QA-SRL

(He et al., 2015a) dataset is annotated by freelancers, while we developed streamlined crowdsourcing

approaches for more scalable annotation.

Crowdsourcing has also been used for indirectly annotating syntax (He et al., 2016; Duan et al.,

2016), and to complement expert annotation of SRL (Wang et al., 2017). Our crowdsourcing

7The incorrect question “When did someone appear?” would be correct if the Prep and Misc slots were corrected to
read “When did someone appear to do something?”
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approach draws heavily on that of Michael et al. (2018), with automatic two-stage validation for the

collected question-answer pairs.

More recently, models have been developed for these newer semantic resources, such as UCCA

(Teichert et al., 2017) and Semantic Proto-Roles (White et al., 2017b). Our work is the first high-

quality parser for QA-SRL, which has several unique modeling challenges, such as its highly

structured nature and the noise in crowdsourcing.

Several recent works have explored neural models for SRL tasks (Collobert and Weston, 2007;

FitzGerald et al., 2015; Swayamdipta et al., 2017; Yang and Mitchell, 2017), many of which employ

a BIO encoding (Zhou and Xu, 2015a; He et al., 2017b). Recently, span-based models have proven

to be useful for question answering (Lee et al., 2016) and coreference resolution (Lee et al., 2017b),

and PropBank SRL (He et al., 2018).

5.8 Conclusion

In this paper, we demonstrated that QA-SRL can be scaled to large datasets, enabling a new

methodology for labeling and producing predicate-argument structures at a large scale. We presented

a new, scalable approach for crowdsourcing QA-SRL, which allowed us to collect QA-SRL Bank

2.0, a new dataset covering over 250,000 question-answer pairs from over 64,000 sentences, in

just 9 days. We demonstrated the utility of this data by training the first parser which is able to

produce high-quality QA-SRL structures. Finally, we demonstrated that the validation stage of our

crowdsourcing pipeline, in combination with our parser tuned for recall, can be used to add new

annotations to the dataset, increasing recall.

5.9 Notes

5.9.1 Experimental Setup

Hyperparameters The parameters of our LSTMs are initialized with random orthonormal ma-

trices as described by Saxe et al. (2014). Input tokens are lower-cased, and the word vectors are

pre-initialized with the 100-dimensional Glove embeddings trained on 6B tokens (Pennington et al.,
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2014a) and fine-tuned during training. Tokens which are not covered by the Glove embeddings are

assigned to the UNK vector. The embedding of the binary predicate indicator feature is also 100

dimensions. The text-encoder BiLSTM consists of 4 layers, uses a hidden size of 300 and . The

output prediction feed-forward neural network for each model consists of a single 100 dimensional

hidden layer with the non-rectified linear unit nonlinearity. For the sequential question generation

model, each timestep consists of 4 layers of LSTMCells with a hidden size of 200.

Training All models are trained using Adadelta (Zeiler, 2012) with ϵ = 1e−6 and ρ = 0.95 and a

mini-batch size of 80. The span encoding BiLSTM uses a recurrent dropout rate of 0.1, and we clip

gradients with a norm greater than 1. All models were trained until performance on the development

set did not improve for 10 epochs8. Our models were implemented in PyTorch9 using the AllenNLP

toolkit (Gardner et al., 2018).

8All models completed training within 40 epochs, which took less than 4 hours on a single Titan X Pascal GPU.
9http://pytorch.org/

http://pytorch.org/
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(a) Question accuracy on Dev (b) Question accuracy on Test

(c) Span accuracy on Dev (d) Span accuracy on Test

Figure 5.3: Human evaluation accuracy for questions and spans, as each model’s span detection threshold is varied.
Questions are considered correct if 5 out of 6 annotators consider it valid. Spans are considered correct if their question
was valid, and the span was among those labeled by human annotators for that question. The vertical line indicates a
threshold value where the number of questions per sentence matches that of the original labeled data (2 questions /
verb).
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Produced

What produced something? A much larger super eruption

Where did something produce something? in Colorado

What did something produce? over 5,000 cubic kilometers of material

A much larger super 
eruption in Colorado 
produced over 5,000 

cubic kilometers of 
material.

appeared

Where didn’t someone appear to do something? In the video

Who didn’t appear to do something? the perpetrators

When did someone appear? never

What didn’t someone appear to do?
look at the camera

to look at the camera

look

Where didn't someone look at something? In the video

Who didn’t look? the perpetrators

What didn’t someone look at? the camera

In the video, the 
perpetrators never 
appeared to look 

at the camera.

met

Who met someone?
Some of the vegetarians

vegetarians

Who met? he

What did someone meet? members of the Theosophical Society

founded

What had been founded?
members of the Theosophical Society

the Theosophical Society

When was something founded?
in 1875

1875

Why has something been founded? to further universal brotherhood

devoted
What was devoted to something? members of the Theosophical Society

What was something devoted to? the study of Buddhist and Hindu literature

Some of the vegetarians 
he met were members 

of the Theosophical 
Society, which had been 
founded in 1875 to 

further universal 
brotherhood, and which 

was devoted to the 
study of Buddhist and 

Hindu literature.

Table 5.5: System output on 3 randomly sampled sentences from the development set (1 from each of the 3 domains).
Spans were selected with τ = 0.5. Questions and spans with a red background were marked incorrect during human
evaluation.
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Part III

THEORY: FROM LANGUAGE, STRUCTURE

In Part I, we introduced the idea of data-driven theories. In Part II, we discussed what the data

part may look like. Now we turn to theory.

In the physical sciences, developing and testing a theory requires constructing a mathematical

model, designing an experiment, predicting the experiment’s outcome using the model, and then

performing the experiment and comparing the result to the predicted one. If the predicted and

observed measurements don’t match, the experimental setup and theory must be scrutinized and

revised until harmony is reached.

In linguistics and AI, rarely does it seem so simple. When it comes to the kind of behaviors we

want to build into NLP systems, there are few widely accepted theories of language behavior that

have the kind of concrete, testable predictive power that we can get in the physical sciences. I think

there are a couple main reasons for this:

• Irreducible complexity. The phenomena we are trying to explain are fundamentally extremely

complex: theories of language behavior must account for the lexicon, compositional structure,

world knowledge, common sense, reasoning, and more. It is impossible to fully specify any

explanatory theory of such things by hand, particularly because the details of such a theory

will also vary by individual speakers and change over time. So those who work in the realm of

theory (e.g., linguists) generally work with very small subtheories (e.g., grammar fragments)

targeted towards their phenomena of interest, and assume the rest — which is out of scope for

them — happens to work out.10 In the context of NLP and AI, we are often forced to deal

with a great deal of the complexity all at once: for example, while a syntactician may decide

10An exception to this is the practice of grammar engineering, which closely approximates the idea of data-driven
theory advocated for in this thesis. The main difference is my greater explicit commitment to theoretical minimalism
and the scope of phenomena I am interested in explaining being much broader.
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not to concern themselves with the mechanisms that drive syntactic disambiguation, building

a syntactic parser requires facing that problem head-on.

• Measurement challenges. Another (related) problem is that people may not always agree

on what it means for a theory to be “falsified,” because of questions about what exactly the

theory is supposed to predict. The clearest example of this from linguistics is probably the

competence–performance distinction, whereby language behavior which is not accounted

for by a theory of so-called linguistic “competence” can be dismissed as a “performance”

issue (or due to “genre effects”). I am not saying no such distinction exists, but (again) in the

context of AI we are not so easily afforded an à la carte approach to the phenomena we wish

to model.

In data-driven theory, I propose a resolution to both of these problems. Carefully specifying and

scoping the data, then gathering it at large scale, eliminates any uncertainty over what phenomena

a theory is supposed to explain. Then, using computational modeling to automatically induce the

theory from that data gives us a way of managing and making sense of the complexity of the data in

a way that is globally consistent.

To make this idea concrete, I will describe how through two concurrent works, coauthors and I

have shown that QA-SRL forms a powerful backbone for a data-driven theory of semantic roles:

• In Michael and Zettlemoyer (2021), covered in Chapter 6, we show how to use QA-SRL

to automatically induce an ontology of semantic roles. The approach is based on a key

insight: the set of QA-SRL questions that are correctly answered by a given answer span

identify an underlying semantic role through its set of syntactic alternations. We leverage this

insight by using a trained QA-SRL question generator as a data simulator (see Section 3.4),

generating a full distribution over (simplified) QA-SRL questions for each argument of a verb

appearing through an entire corpus. Clustering these distributions of questions according to a

simple maximum-likelihood objective yields a set of discrete semantic roles that exhibits high

agreement with existing resources. This presents an approach which could potentially be used

to develop semantic role ontologies in new domains where they are not currently available.
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• Pyatkin et al. (2021)11 show how to use QA-SRL to structure a language generation system.

The task is to generate fluent questions that ask about the arguments corresponding to specific

semantic roles in context, where the roles are drawn from a pre-existing ontology. The primary

challenge here is a lack of training data: only QA-SRL provides such exhaustive annotations

of questions for each verb, but it does not produce fully fluent questions (maintaining the

simple QA-SRL format) and we have no annotations for semantic roles which aren’t expressed

in a given sentence. We overcome these challenges with two key insights: First, we find that

QA-SRL questions corresponding to a specific role generally maintain their semantics (i.e.,

correspond to the same role) across many contexts. This allows us to prime our question

generation system with a template QA-SRL question corresponding to the correct role,

allowing it to generate semantically correct questions even when the answer isn’t provided in

context (a situation never encountered during training). Second, we find that we can leverage

the syntactic structure within a QA-SRL question to align the placeholders (who, what,

someone, something, etc.) in each question with the answers of other questions, translating the

QA-SRL Bank 2.0 (FitzGerald et al., 2018, Chapter 5) into the Frame-Aligned QA-SRL Bank

which contains exhaustive annotation of more fluent questions, closer to what is provided in a

QAMR (Michael et al., 2018, Chapter 4).

Together this work illustrates not only the promise for the development of large-scale ontologies

in a data-driven way (Michael and Zettlemoyer, 2021), but it also illustrates how having these

ontologies computationally grounded in the phenomena they are designed to explain, i.e., question-

answer pairs (Pyatkin et al., 2021), facilitates the downstream use of such an ontology. It’s not hard

to imagine next steps combining these works: In future systems, using semantic roles automatically

induced from QA-SRL can obviate the need for pre-specified role ontologies altogether. This would

be great news for NLP systems working with semantic roles, but my hope is that these insights may

translate to other task settings as well — an issue I will come back to in Part IV.

11In this project, I served in an advisory role as well as developing the placeholder-alignment algorithm and
Frame-Aligned QA-SRL Bank.
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Chapter 6

INDUCING SEMANTIC ROLES WITHOUT SYNTAX

Semantic roles are a key component of linguistic predicate-argument structure, but developing

ontologies of these roles requires significant expertise and manual effort. Methods exist for auto-

matically inducing semantic roles using syntactic representations, but syntax can also be difficult

to define, annotate, and predict. We show that in English, it is possible to automatically induce

semantic roles from QA-SRL, a scalable and ontology-free semantic annotation scheme that uses

question-answer pairs to represent predicate-argument structure. By associating arguments with

distributions over QA-SRL questions and clustering them in a mixture model, our method outper-

forms all previous models as well as a new state-of-the-art baseline over gold syntax. We show that

our method works because QA-SRL acts as surrogate syntax, capturing non-overt arguments and

syntactic alternations, which are central motivators for the use of semantic role labeling systems.1

6.1 Introduction

Semantic role labeling (SRL) requires extracting propositional predicate-argument structure from

language, i.e., who is doing what to whom. Applications of SRL include information extraction

(Christensen et al., 2011), machine reading (Wang et al., 2015), and model analysis (Tenney et al.,

2019a; Kuznetsov and Gurevych, 2020), and semantic roles form the backbone of many more

general meaning representations (Banarescu et al., 2013a; Abend and Rappoport, 2013b).

The primary challenge, and promise, for SRL systems is to distill syntactically variable surface

structures into semantic predicate-argument structures from an ontology (Palmer et al., 2005; Baker

et al., 1998a). However, ontologies and their associated training data require time and expertise to

1This chapter is based on Michael and Zettlemoyer (2021). Code, models, and a web interface to explore the results
are available at https://github.com/julianmichael/qasrl-roles.

https://github.com/julianmichael/qasrl-roles
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The plane was diverting around weather formations over the Java Sea when
contact with air traffic control (ATC) in Jakarta was lost.

wh aux subj verb obj prep obj2 ? Answer

What was being diverted around ? weather formations
What was diverting ? The plane
What was being diverted ? The plane
What was lost ? contact with air traffic control

Where was something lost ? over the Java Sea

Table 6.1: Example QA-SRL question-answer pairs from the development set of the QA-SRL Bank 2.0 (FitzGerald
et al., 2018). Questions may be represented in a verb-agnostic way by recording the form of the verb in the verb slot
(e.g., stem, past participle). Note that the syntax used in questions may differ from the syntax in the source sentence,
for example in the above questions using diverted in its passive form.

Labels Questions

A1 (98%) What is given? .30
What does something give something? .21
What does something give? .20
What is something given? .11

A0 (98%) What gives something? .44
What gives something something? .27
What gives something to something? .08

A2 (94%) What is given something? .28
What does something give something to? .18
What does something give something? .14
What is given? .09
What is something given to? .07

TMP (46%), When does something give something? .20
ADV (22%), How does something give something? .09
MNR (12%) When is something given? .09

When is something given something? .09

PNC (30%), Why does something give something? .18
ADV (22%), Why does something give up something? .07
TMP (14%) Why is something given something? .07

Table 6.2: Roles for give produced by our final model. Core arguments are captured almost perfectly, exhibiting both
passive and dative alternations.
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annotate and do not readily generalize to new domains, limiting their broad-coverage applicability.

Prior work towards mitigating this problem includes unsupervised induction of semantic roles

from syntactic representations (Lang and Lapata, 2010). However, the need for formal syntactic

supervision retains some of the annotation and generalization difficulties of supervised SRL, and it

has proven difficult to do much better than a simple syntactic baseline (Lang and Lapata, 2011). An

alternative is to use an ontology-free annotation scheme like QA-SRL (He et al., 2015b), which

represents roles with natural language questions. While QA-SRL can be annotated at large scale

(FitzGerald et al., 2018), many different QA-SRL questions may correspond to the same role,

making it more difficult to use in downstream tasks.

We show how to overcome this difficulty, by automatically inducing an ontology of semantic

roles corresponding to clusters of QA-SRL questions (see Table 6.2 for an example clustering). We

use a model to predict a distribution over QA-SRL questions associated with each argument in a

corpus, and cluster them to maximize likelihood under a simple model we call a Hard Unigram

Mixture. Our model can be effectively optimized both by EM and greedy methods, which affords

the benefits of tunable hierarchical clustering without sacrificing scalability (Section 6.3).

Experiments in semantic role induction (Section 6.4) show that our method outperforms all

previous methods in the literature, as well as a new state-of-the-art baseline over gold syntax. This

is despite requiring no formal syntactic supervision or theory, where the formalism used by previous

work is highly informative of gold standard semantic roles (Section 6.5). We also present a detailed

analysis (Section 6.6) showing why our method works: QA-SRL acts as surrogate syntax, removing

(role-irrelevant) syntactic variation in the source text such as that from non-overt arguments (e.g.,

phrases extracted from relative clauses), while itself exhibiting (role-relevant) syntactic alternations

which capture the behavior of verbal predicates (Table 6.2). While our model is only defined for

English, as that is how QA-SRL is defined, the principle of surrogate syntax could conceivably be

applied to other languages as well. Taken together, these results paint a path towards on-the-fly,

data-driven construction of useful, interpretable ontologies of semantic structure.
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6.2 Task Setting

The input to our task is a set of natural language sentences, where a subset of the tokens are marked

as predicates. Each predicate has a set of arguments, and each argument x corresponds to a set of

spans x = {s1, . . . , sm} in the predicate’s sentence.2

An ontology of semantic roles is a set of frames (corresponding to semantic predicates), and

each frame has a set of associated roles (corresponding to participants in the event or state denoted

by its frame). There may also be a set of modifier roles (e.g., location or time) which can appear with

any frame. In supervised semantic role labeling, each predicate in the input data must be assigned

to one of the frames in a given ontology, and each of a predicate’s arguments must be assigned

roles from its frame (or modifier roles). In semantic role induction, our task is to produce both the

ontology and these assignments.

We follow prior work (Lang and Lapata, 2010) in treating semantic role induction as a clustering

problem and assuming a single frame per predicate lemma.3 Given input data marked with predicates

and their arguments, we cluster the arguments for each predicate into sets corresponding to semantic

roles. We may then compare these clusters to gold labels using clustering metrics (Section 6.4.3).

6.3 Modeling

Our model treats each argument x as a set of counts of QA-SRL questions, denoted ϕ(x). We

produce these counts from a trained QA-SRL question generator (Section 6.3.1) and cluster them

by maximizing their likelihood under a mixture model (Section 6.3.2) using a hybrid of flat and

hierachical clustering (Section 6.3.3).

2Previous work (Lang and Lapata, 2010) assumes a syntactic dependency tree and marks each argument by its
syntactic head, which allows for features based on argument lemmas and dependency paths. We instead assume sets
of argument spans, but no syntax tree; this allows for features based on spans (such as QA-SRL questions). Both
approaches are ways of featurizing the same gold arguments.

3Some ontologies, like FrameNet (Baker et al., 1998a), define frames that span multiple lemmas (e.g., buy and sell
share a Commercial Transaction frame), whereas others like PropBank (Palmer et al., 2005) use frames which are
specific to each lemma, denoting something closer to word sense. In our case, assuming a single frame per lemma
simplifies modeling and allows us to compare to previous work. However, modeling predicate sense is an important
problem for future work, as we will suggest in Section 6.6.3.
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6.3.1 Generating QA-SRL Features

For each argument x of a predicate, we leverage a trained QA-SRL parser to generate pseudocounts

ϕ(x) of simplified QA-SRL questions, which will form the input features for the clustering step.

Simplified QA-SRL Example QA-SRL questions are shown in Table 6.1. These questions contain

information which is not directly relevant to semantic roles, such as tense, aspect, modality, and

negation. Since this creates sparsity for our model, we remove it as a preprocessing step. In

particular, we replace the aux and verb slot values with either is and past participle (for passive

voice), _ and present (for active voice when subj is blank), or does and stem (for active voice when

subj is present). We also replace all occurrences of who and someone with what or something.

Generating Question Counts Let p denote a predicate, s denote a span, and q denote a simplified

QA-SRL question. To generate our question count vectors ϕ, we reproduce the QA-SRL question

generator of FitzGerald et al. (2018), which generates a distribution P(q | p, s) over QA-SRL

questions conditioned on a predicate p and answer span s in a sentence. This model uses a BiLSTM

encoder, concatenating the output representations of span endpoints and feeding them into a custom

LSTM decoder which models the QA-SRL slot values in sequence. We modify the model to use

BERT (Devlin et al., 2019) features as input embeddings for the BiLSTM (details in Section 6.8.1).

Recall from Section 6.2 that an argument x consists of a set of spans from its sentence. We

generate question counts ϕ(x) ∈ R|q|
≥0 by taking the mean

ϕ(x) =
1

|x|
∑
s∈x

P(q | p, s),

where R≥0 denotes the nonnegative real numbers and |q| is the number of possible simplified

QA-SRL questions. Since |q| is large, to make this tractable we approximate P(q | p, s) with beam

search, using a sparse representation and assigning counts of 0 to questions outside the beam.
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6.3.2 Objective

Let X = {x1, . . . , xn} be the set of input arguments for clustering. Our goal is a clustering

C = {C1, . . . , Ck} which is a partition of X. We model each argument’s questions ϕ(x) as being

drawn from a mixture model over latent roles, each corresponding to a cluster C ∈ C. We

maximize likelihood under this model, which we call a Hard Unigram Mixture, with the addition of

a connectivity penalty which encourages roles not to appear twice for the same predicate instance.

The Hard Unigram Mixture (HUM) Recall that ϕ : X → Rd
≥0 assigns question pseudocounts

to each x ∈ X. Let π denote a probability distribution over {1, . . . , k} and θ a distribution over

{1, . . . , d}. We propose the Hard Unigram Mixture loss

LHUM
λ (C) = − log P(X | C)− λ log P(C),

where

P(X | C) =
k∏
i

max
θ

∏
x∈Ci

P(ϕ(x) | θ)

is the data likelihood and

P(C) = max
π

k∏
i

π
||Ci||
i

is the clustering likelihood, writing ||C|| for the sum of the ϕ counts in a cluster C. The data

likelihood prefers more, smaller clusters, the clustering likelihood prefers fewer clusters, and λ is a

hyperparameter that trades off between them.4

Connectivity Penalty Let p(x) denote the predicate instance corresponding to an argument x. We

propose a connectivity penalty

Lcp(C) =
1

2

k∑
i

∑
x1,x2∈Ci

δ(p(x1) = p(x2)),

4Here, LHUM
1 is equivalent to the negative log likelihood under the maximum likelihood estimate of a mixture of

unigrams model (Nigam et al., 2000) constrained to hard assignments C; hence the name Hard Unigram Mixture.
Further theoretical and empirical comparison to prior work is provided in Section 6.8.7.
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where δ is the indicator function, which discourages clusterings where multiple arguments of the

same predicate instance are assigned the same role. This assumption has also been leveraged by

prior models (Lang and Lapata, 2011; Titov and Klementiev, 2012).

Loss Function Our full loss is then

Lλ(C) = LHUM
λ (C) + Lcp(C)

with the single hyperparameter λ.

6.3.3 Hybrid Clustering

We optimize Lλ in three steps: flat pre-clustering, greedy merging, and tuned splitting. This

approach provides us with both the efficiency benefits of flat clustering and the relative determinism,

interpretability and tunability of hierarchical clustering.

Flat Pre-Clustering For pre-clustering, we minimize L0 via hard EM. To avoid likelihoods of 0

in LHUM
0 , we smooth our estimates of θ using a Dirichlet prior. To optimize Lcp via EM, we draw

x1 from the previous iteration’s clustering in order to compute the contribution of each x2 to the

loss. With sufficiently large k, this can produce a high-precision clustering in O(nk) time to serve

as input to the merging step.

Greedy Merging After pre-clustering, we produce a binary cluster tree by iteratively merging

pairs of clusters which greedily minimize L0. Since λ = 0, the loss grows monotonically when

merging clusters. The loss at each merge can be efficiently updated by maintaining maximum

likelihood estimates θ for each cluster.

Tuned Splitting Finally, we iteratively split the cluster tree produced by the merging stage. At

each step, we split the cluster Ci with the lowest log data likelihood per item log P(Ci|C)
|Ci| . We then

choose the clustering which minimizes Lλ, with λ > 0 tuned during model development.5

5A comparison of this method against a constant-k baseline and oracle upper bound is given in Section 6.8.5.
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6.4 Experimental Setup

Data We run experiments on the distribution of PropBank (Palmer et al., 2005) provided for

the CoNLL 2008 Shared Task (Surdeanu et al., 2008). We use the same setup as previous work,

removing arguments annotated with reference (R-) and continuation (C-) roles, keeping only verbal

predicates,6 and using the development set for model development and the training set for testing.

Our one preprocessing difference from previous work is that instead of using the dependency-

based SRL annotations provided in the CoNLL 2008 dataset, we use full answer spans, which we

reconstruct by aligning the CoNLL 2008 data back to the original annotations in the Penn Treebank

(Marcus et al., 1993a) and PropBank.7

6.4.1 Models

HUM of QA-SRL Questions (HUM-QQ) We train a QA-SRL parser on the expanded set of the

QA-SRL Bank 2.0 (FitzGerald et al., 2018) using the architecture described in Section 6.3.1. In the

pre-clustering step, we estimate k = 100 clusters. For tuned splitting, we choose λ to maximize

performance on the development set. Hyperparameters are detailed in Section 6.8.2.

SYNTF This model assigns each argument to a cluster corresponding to the label of its syntactic

dependency to its parent, using the syntactic formalism provided in CoNLL 2008 Shared Task data.

Past work has found SYNTF to be a strong baseline (Lang and Lapata, 2011).

Prior Work We compare to Bayesian generative modeling (Titov and Klementiev, 2012, BAYES),

which is state-of-the-art on gold syntax, and an embedding-based method (Luan et al., 2016,

SYMDEP/ASYMDEP) which is state-of-the-art using automatic syntax. These as well as all other

6While we ignore nominal predicates, our method naturally generalizes to nominalizations, which are provided
with QA-SRL annotations in QANom (Klein et al., 2020).

7Using gold spans is necessary in order to compare to previous work and use the CoNLL 2008 dataset for evaluation
of role induction. In a more realistic setting where gold argument spans are not available, we could use the span
detector of FitzGerald et al. (2018) to construct argument spans.
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prior approaches (e.g., Lang and Lapata, 2011; Titov and Khoddam, 2015; Woodsend and Lapata,

2015) crucially rely on syntactic features.

6.4.2 Auxiliary Clustering Rules

For SYNTF and HUM-QQ, we experiment with several auxiliary clustering rules.

Lexical Rules We employ three lexical rules, each producing a separate cluster for all arguments

whose spans exactly match a phrase contained in the rule’s lexicon. Our rules are for negation (5

phrases), modals (23 phrases), and discourse modifiers (55 phrases). These lexica were written

to correspond to the AM-NEG, AM-MOD, and AM-DIS roles on the basis of the PropBank annotation

guidelines (Babko-Malaya, 2005) and development set.8

Passive to Active Conversion We also propose a syntactic rule that applies only to SYNTF, where

we the transform the dependencies as follows:

• The LGS label, meaning “logical subject,” is a dependency label given for by-phrases modifying

a passive verb whose object denotes what is normally the subject of the verb’s active form

(Surdeanu et al., 2008). We change this to SBJ.

• Passive voice can be detected when the predicate verb is in past participle form (part-of-speech

tag VBN) and its syntactic parent is a be-verb (part of speech VC, lemma “be”). In these cases,

we change the syntactic label of any SBJ dependents into OBJ.

6.4.3 Metrics

Purity/Collocation To compare with previous work, we follow Lang and Lapata (2010) in using

purity and collocation based F1 score for our main evaluation. Purity measures cluster homogeneity:

it assigns to each cluster the gold label for which it has the most points, and then measures

8Full lexica for these rules are provided in Section 6.8.3.
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the proportion of points which have their cluster’s assigned label. Collocation measures cluster

concentration: it assigns each gold label to the cluster which contains the most of its points, and

then measures the proportion of points which are in their gold label’s assigned cluster. These are

calculated independently for each verb and averaged, weighing each verb by its number of argument

instances. The harmonic mean of the final results is reported as an F1 score.

B3 For deeper analysis, we use the B3 (B-cubed) family of clustering metrics (Bagga and Baldwin,

1998). B3 precision and recall are the precision and recall of each point’s predicted cluster against

its gold cluster, averaging over points. In comparison to purity and collocation, these metrics are

tougher and more discriminative between clusterings, respecting important constraints like the

cluster completeness constraint of Rosenberg and Hirschberg (2007), among others (Amigó et al.,

2009). B3 also allows us to reliably report scores along slices of the data for analysis purposes,

as well as account for each slice’s contribution to the total error. We report full B3 results for our

models in Section 6.8.6 and encourage future work to use these as the primary metrics.

6.5 Results

Main results are shown in Table 6.3. Our auxiliary rules put SYNTF significantly above the state of

the art for gold syntax (with 85.2 F1 versus 83.0). HUM-QQ surpasses it with 87.1 F1 in the best

case, despite not using gold syntax at all.

6.5.1 A Stronger Syntactic Baseline

For SYNTF, the addition of either lexical (negation, modal, and discourse) rules or the passive-

to-active conversion produce competitive models, covering over 75% of the gap from baseline

to BAYES. Used together, our rules bring the score to 85.2 F1, surpassing BAYES by 2.2 points.

Table 6.5 breaks down these improvements by measuring B3 performance on relevant roles.

For the lexical rules, we find that the negation and modal rules nearly completely capture their

roles, with the discourse rule providing significant improvements as well. In contrast, previous

models have struggled with these roles, as reported by Lang and Lapata (2011, Table 4, NEG and DIS
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Model PU CO F1 ∆F1

Gold Syntax

SYNTF 81.6 77.8 79.6 0.0
+ lex 85.2 79.8 82.4 +2.8
+ pass→act 83.6 80.8 82.2 +2.6
+ all rules 87.3 83.1 85.2 +5.6

BAYES (SotA) 88.7 78.1 83.0 +3.4
ASYMDEP 85.6 78.3 81.8 +2.2

Automatic Syntax

BAYES 86.2 72.7 78.8 -0.8
SYMDEP (SotA) 81.9 76.6 79.2 -0.4

Automatic QA-SRL

HUM-QQ 80.9 83.4 82.1 +2.5
- conn. penalty 79.0 82.7 80.8 +1.2
+ lex 85.4 88.8 87.1 +7.5

Table 6.3: Main results. The addition of a few simple rules to the SYNTF baseline puts it significantly above existing
approaches, and incorporating these rules into our QA-SRL-based model pushes performance even further, despite not
using gold syntax at all. Evaluation numbers for baselines besides SYNTF are drawn directly from prior work.

B3 F1 A0 A1 A2 A3 A4 Args TMP ADV MNR LOC PNC CAU Mods All

SYNTF + lex 78 71 63 55 67 73 87 51 60 81 65 67 74 74
HUM-QQ + lex 90 87 69 54 65 85 78 39 50 55 56 36 61 82

% Err \ Freq .26 .37 .09 .01 .01 .74 .07 .04 .03 .03 .01 .01 .18 1.0

SYNTF + lex .23 .41 .13 .03 .02 .79 .04 .06 .04 .02 .01 .01 .18 1.0
HUM-QQ + lex .15 .26 .14 .04 .02 .61 .08 .12 .07 .06 .02 .02 .38 1.0

Table 6.4: B3 F1 scores on the training set for the most common labels, excluding NEG, MOD, and DIS.
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roles). However, this is better seen as a shortcoming of the evaluation than the models: these roles

are relatively uninteresting from the perspective of semantic role induction, as they are closed-class,

not specific to particular predicates, and don’t correspond to a semantic argument or modifier of the

event denoted by the predicate. It might have been reasonable to exclude these arguments from the

task at the outset, but instead, using our rules can mostly account for them while maintaining some

comparability to prior work.

The passive-to-active conversion also produces a sizable gain, particularly on the core roles A0

and A1 (Table 6.5). Titov and Klementiev (2012) informally note that the BAYES model learns some

syntactic alternations; of these, the passive alternation is perhaps the most impactful as it can apply

to any transitive verb. What we’ve found is that a simple rule accounting for the passive construction

in the syntax provided to the BAYES model can account for a large majority of its gains.

These results provide extra context in which to interpret the existing literature on semantic role

induction. The fact that our simple auxiliary rules bring the syntactic baseline beyond the existing

state of the art raises questions about whether the performance differences between previously

published models are due to their relative abilities in capturing their intended phenomena — such

as selectional restrictions and distributions over argument heads (Lang and Lapata, 2014) — or

capturing these rules. It is not clear how much of the 5.2 F1 gain over SYNTF from our auxiliary

rules is redundant with previous models. It seems likely that applying our rules to them would

produce a result competitive with HUM-QQ, but it would still rely on gold syntax. Our focus is the

utility of QA-SRL as features; indeed, it is also conceivable that applying a hierarchical model like

BAYES to QA-SRL features would bring further improvements as well.

6.5.2 Superiority Without Syntax

HUM-QQ benefits disproportionately from the lexical rules, with a 5 F1 gain as opposed to the 2.8

F1 gain for SYNTF. This is because PropBank’s NEG, MOD, and DIS arguments almost never occur in

QA-SRL, so they get nonsense questions from the model (see Section 6.8.10, Table 6.12).9 However,

9In practice, when using arguments predicted by a QA-SRL span detector (FitzGerald et al., 2018), we can remove
the lexical rules entirely since the corresponding arguments will not be present.
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B3 F1 Score

Model NEG MOD DIS A0 A1

SYNTF 41 45 50 78 71
+ all rules 98 98 80 83 78

Frequency .01 .04 .03 .26 .37

Table 6.5: Breakdown of B3 F1 scores on the training set for the labels most relevant to our auxiliary rules. The lexical
rules capture AM-NEG, AM-MOD, and AM-DIS very well, and the active/passive rule significantly improves performance on
A0 and A1, which are by far the most frequent role labels in the data. A rule-by-rule performance breakdown is provided
in Section 6.8.4.

even the baseline model with no lexical rules or connectivity penalty surpasses the performance

of the baselines using automatic syntax, all of which fall short of SYNTF on gold.10 With these

additions, HUM-QQ sets a new state of the art beyond our enhanced SYNTF baseline, with 87.1

F1.

Table 6.4 compares our model to SYNTF + lex on the most common roles using B3. HUM-QQ

greatly improves over SYNTF on core arguments (73→85 F1), but performs worse on modifiers

(74→61). Since core arguments make up 74% of arguments in the corpus, HUM-QQ brings a large

improvement overall (74→82) and core arguments still account for a majority of its error (at 61%).

SYNTF’s high performance on modifiers can be traced back to representational choices in the

CoNLL 2008 Shared Task syntax (Surdeanu et al., 2008), which uses several dependency types that

are semantic in nature, such as TMP, LOC, MNR, and DIR, among others. These often correlate well

with gold modifier role labels, especially TMP (87 F1) and LOC (81 F1).11 This fact has led some

prior work, e.g., Titov and Klementiev (2012), to use these dependency labels as clusters directly, so

as to avoid the need to model modifier roles and instead focus on core arguments. Since we eschew

syntactic features, we are forced to recover PropBank modifier roles from the ground up, making

the task more difficult (explored more in Section 6.6.2).

10To be fair, these models use the automatic parses provided with the CoNLL 2008 data, which were produced by
MaltParser (Nivre et al., 2006) at the time. Using state-of-the-art methods to predict the parses today would almost
certainly improve the semantic role induction results, but probably not past gold parses.
11See Lang and Lapata (2014, Table 2) for a detailed contingency table.
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(a) Distribution of wh-words for each role. (b) Normalized PMIs between gold roles.

Figure 6.1: Cooccurrence between gold role labels and wh-words in QA-SRL (left) or each other in HUM-QQ’s
predicted clusters (right). The distributions of wh-words are normalized per role, and NPMI between gold labels is
chance-corrected, where negative values (red) are clustered apart more often than by chance, and positive values (blue)
are preferentially grouped together.

6.6 What does QA-SRL Encode About Semantic Roles?

Semantic roles are traditionally characterized as abstractions over syntactic arguments and modifiers

(Gruber, 1965; Fillmore, 1968). Despite their deep entanglement with syntax, we have found that

significant improvements in semantic role induction are possible without explicit syntactic analysis

of the sentence, instead leveraging distributions of QA-SRL questions for each argument. In this

section, we show that this is because QA-SRL questions provide surrogate syntax, recapitulating the

aspects of syntax that are important for semantic roles (Section 6.6.1). Where QA-SRL questions

fail to capture aspects of PropBank semantic roles, this arises in part from ontological differences

with PropBank on modifiers (Section 6.6.2) and limitations of our experimental setup ignoring

predicate sense (Section 6.6.3).

6.6.1 Surrogate Syntax

HUM-QQ brings the largest improvement over SYNTF on core arguments A0 and A1. To investigate

this, we identify the verbs which saw the greatest increase in B3 F1 score on each role individually.
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What we find is that QA-SRL works by acting as surrogate syntax: it removes much of the (role-

irrelevant) syntactic variation in the source text, while still exhibiting (role-relevant) syntactic

alternations which capture the syntactic behavior of the predicate verb.

Reducing Syntactic Variation For A0, the three verbs with the greatest improvement from SYNTF

to HUM-QQ are compete, conduct, and connect, all with gaps of over 40 F1.12 For each of these,

their A0 arguments have a wide range of syntactic functions assigned by SYNTF, with SBJ less than

50% of the time — despite the fact that where the A0 role is present, it is designed to correspond to

the grammatical subject (Babko-Malaya, 2005). We found that this is because these verbs frequently

have non-overt subjects, which are not direct syntactic dependents of the predicate in CoNLL 2008

syntax (74% of a random sample of 30 sentences with A0 arguments of these three verbs, 10 from

each; see Section 6.8.8). They appear in phrases like ‘two competingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompetingcompeting objectives’ (with adjectival

clauses), ‘urging directors to conductconductconductconductconductconductconductconductconductconductconductconductconductconductconductconductconduct a fair auction’ (with control verbs), or ‘a maze of halls that

connectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnectsconnects film rooms’ (with relative clauses). In these cases, the SYNTF baseline does poorly, as the

correspondence between the SBJ dependency and A0 role only holds consistently for overt subjects.

In contrast, HUM-QQ assigns the vast majority of A0 arguments in these cases with questions

that put the wh-word in subject position, e.g., What competes with something? or What conducts?

Here, QA-SRL removes much of the syntactic variation from the source text and recovers something

close to the underlying grammatical relation between the argument and the verb, while also providing

information about the verb’s subcategorization frames (e.g., the presence of an object in What

connects something?), aiding in recovery of the semantic role.

Capturing Syntactic Alternations For A1, The verbs with the greatest improvement are propose,

prefer, price, and relate, with a gap of >50 F1 between models. Of the top 50 such verbs, 48 are

transitive with A1 as the transitive object (see Section 6.8.8). In these cases, the passive alternation

allows the argument to be asked about in either the subject (What is proposed?) or object (What

12To reduce variance from low-frequency verbs, we measure this gap after smoothing their precision and recall with
10 counts of the weighted aggregate for the model.
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does something propose?) position. We find that QA-SRL does this, frequently combining questions

about passive subject and active object into one role: for 62% of the top 50 verbs, the cluster

corresponding to A1 gives greater than 20% probability each to passive subject and active object

questions. This happens because the Hard Unigram Mixture objective clusters together distributions

whose uncertainty is spread over the same set of elements, which here correspond to syntactic

alternations. As an example, Table 6.2 shows the induced clusters for give, which exhibit both

passive and dative alternations; give gained 31 F1 on A1 in HUM-QQ.

6.6.2 Mismatched Modifiers

HUM-QQ struggles to identify PropBank modifier roles, and it has room for improvement on

trailing arguments like A2 and A3. In QA-SRL, the semantics of these roles are primarily expressed

by the initial wh-word, such as when, where, why, how, etc. Figure 6.1a shows the distribution of

wh-words appearing for each role in the training set. To a large extent, each role is concentrated on

a corresponding wh-word, but there are exceptions. A2, A3, and AM-ADV are widely spread between

wh-words, and how and why account for a significant portion of questions for several roles each.

See Section 6.8.10, Table 6.11 for full questions.

To visualize how this affects clustering results, Figure 6.1b shows the normalized pointwise

mutual information (NPMI; Bouma, 2009) between gold labels in HUM-QQ’s predicted clusters

(see Section 6.8.9 for how this is calculated). While A0 and A1 are distinguished well from all

other roles, the trailing arguments A2 and A3 are not well distinguished from modifiers, reflecting

the difficulty of the argument–adjunct distinction for these arguments, which often have similar

meanings to modifiers and form a significant error case for supervised labelers (He et al., 2017a).

AM-ADV tends to be confused with other modifier roles, which reflects its definition in the PropBank

guidelines as a sort of “catch-all” role for meanings not captured in the other modifiers (Babko-

Malaya, 2005). Finally, AM-CAU (cause) and AM-PNC (purpose, not cause) tend to be confused with

each other, since they both elicit why questions.
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B3 F1 A0 A1 A2 A3 A4 Args TMP ADV MNR LOC PNC CAU Mods All

SYNTF + lex 78 71 63 55 67 73 87 51 60 81 65 67 74 74
HUM-QQ + lex 90 87 69 54 65 85 78 39 50 55 56 36 61 82

+ gold arg/adj 91 89 78 65 78 88 77 47 57 61 58 35 64 85
+ gold sense 91 90 74 58 75 87 80 43 55 64 63 47 65 84
+ both 92 92 83 70 81 90 81 51 64 69 66 46 69 87

Table 6.6: Breakdown of B3 F1 scores on the training set for the most common labels in our ablation studies. The first
two rows are repeated from Table 6.4.

Argument–Adjunct Distinction Scores are significantly lower for trailing core arguments A2–4

than for A0 and A1. Since part of the problem seems to be confusion with modifier roles (Figure 6.1b),

we conduct an oracle experiment to enforce the argument–adjunct distinction by doubling the size of

the feature space to ϕ(x) ∈ R2|q|
≥0 and projecting gold core arguments and modifiers into orthogonal

subspaces.

Results are shown in Table 6.6 (+ gold arg/adj). The oracle boosts performance by 3 points, with

particular focus on trailing arguments A2 (69→78) and A4 (65→78), as well as modifiers AM-ADV

(39→47), AM-MNR (50→57), and AM-LOC (55→61). However, overall performance on modifiers is

still far below the syntactic baseline. Given the coarse semantics of English wh-words in comparison

to PropBank modifier roles (Figure 6.1a), it may be that finer-grained features are necessary to

significantly increase performance on modifiers.

6.6.3 Scrambled Senses

Despite core arguments significantly improving under HUM-QQ, they remain the largest source of

error. To investigate this, we examine the verbs with the worst F1 on core arguments. The top verbs

are go, settle, confuse, turn, and follow, with <60 F1. Half of the top 20 have 4 or more predicate

senses annotated in PropBank, where different senses often manifest their roles differently: for

example, the subject is A0 when settling with the IRS (sense 2), but A1 when settling into a new job

(sense 3). To quantify this, we run an oracle experiment where we induce roles for each verb sense

separately instead of each verb lemma. Results are shown in Table 6.6 (+ gold sense). Performance
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improves particularly on trailing arguments A2, A3 and A4, which tend to differ greatly in meaning

and realization for different predicate senses. A combined oracle (+ both) shows that the gains

are mostly complementary with those from the argument/adjunct distinction oracle. These results

suggest that future work on semantic role induction should prioritize modeling predicate senses.

6.7 Conclusion

We have shown that QA-SRL provides a way to do state-of-the-art semantic role induction without

the need for formal syntax. It works by providing surrogate syntax: it captures long-distance

dependencies to non-overt arguments and exhibits syntactic alternations which allow us to detect

varied ways of expressing the same role. These results suggest that QA-SRL can provide some of

the practical benefits of sophisticated syntactic formalisms that have separate layers of functional

structure, like Combinatory Categorial Grammar (Steedman, 1996, 2000), Head-Driven Phrase

Structure Grammar (Pollard and Sag, 1994), or Lexical Functional Grammar (Bresnan et al., 2015)

— but without grammar engineering or expert data annotation.

One challenge is that QA-SRL is currently only defined for English. Future work may benefit

from our lessons about the utility of surrogate syntax when designing similar annotation methodolo-

gies for other languages; combining this with insights from existing work on grammar development

for diverse languages (Bender et al., 2002) may be key.

While formal ontologies of semantic roles and syntax are difficult to formulate and scale, our

results show how it may be comparatively feasible to formulate, scale, and build robust models

for the phenomena that such ontologies are meant to explain. QA-SRL exhibits enough of these

phenomena that a relatively simple model over it (the Hard Unigram Mixture in Section 6.3) yields

state-of-the-art induced semantic roles which are interpretable and linguistically meaningful. This

suggests that identifying and gathering supervision for more phenomena (e.g., those related to word

sense or modifier semantics) in a relatively theory-agnostic way, then building models grounded in

linguistic theory, may be a promising avenue for future work. This general approach has recently

been applied to syntax as well, for example leveraging constituency tests (Cao et al., 2020) and

naturally-occurring bracketings (Shi et al., 2021).
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The fact that discrete structures can be reliably derived from ontology-free annotation schemes

like QA-SRL can potentially inform future efforts to construct large-scale ontologies of semantic

structure. QA-SRL has the further benefit over traditional SRL of including a broader scope of

implicit arguments than those addressed by supervised systems, as shown by Roit et al. (2020).

Taken together, our results suggest that with the right kind of annotation scheme, it should be

possible to construct rich semantic ontologies in new domains, without expert curation and in a

data-driven, linguistically motivated way.

6.8 Notes

6.8.1 QA-SRL Question Generator

We reproduce FitzGerald et al. (2018)’s architecture, encoding sentences with a stacked alternating

LSTM (Zhou and Xu, 2015b) with highway connections (Srivastava et al., 2015) and recurrent

dropout (Gal and Ghahramani, 2016), and representing spans by concatenating the output embed-

dings of their endpoints (Lee et al., 2016). The question generator is a specialized LSTM decoder

which only outputs the tokens allowed in each QA-SRL slot. The current predicate is indicated by

an embedded binary feature input to BiLSTM encoder, and answer span representations are input

at each step of the LSTM decoder. We make two changes from FitzGerald et al. (2018): 1) As

opposed to GloVe (Pennington et al., 2014b) or ELMo (Peters et al., 2018), We embed the inputs

with BERT-base (Devlin et al., 2019) in the ‘feature’ style with a learned scalar mix over layers,

and 2) we additionally concatenate the output embedding of the predicate to the input of the LSTM

decoder.

6.8.2 Hyperparameters

QA-SRL Question Generator The BiLSTM encoder uses a hidden size of 300, 4 layers, 0.1

recurrent dropout probability, and a 100-dimensional predicate indicator embedding. The LSTM

decoder has a 100-dimensional hidden state and predicts QA-SRL slots with 200-dimensional

embeddings via an MLP with a 100-dimensional hidden layer. We train on all QA pairs in the
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Model PU CO F1 ∆F1

SYNTF 81.6 77.8 79.6 0.0
+ negation 82.8 77.8 80.2 +0.6
+ modals 83.0 79.8 81.3 +1.7
+ discourse 82.6 77.8 80.1 +0.5
+ pass→act 83.6 80.8 82.2 +2.6
+ all rules 87.3 83.1 85.2 +5.6

Table 6.7: Detailed results for auxiliary rules on SYNTF.

QA-SRL Bank 2.0 expanded training set using BERT’s variant of Adam (Kingma and Ba, 2015)

with a learning rate of 5e−5 and batch size of 32, selecting the model with minimal perplexity on

the expanded development set. To produce our feature vectors ϕ, we decode questions with a beam

size of 20 and a minimum probability cutoff of 0.01.

Flat Pre-Clustering We perform flat clustering with 100 clusters, skipping this step for verbs with

100 arguments or less. We use a concentration parameter of α = 0.01 (i.e., uniform base measure

with a sum of 0.01) and do 5 random restarts, each running until the loss decreases by less than

1e−5 per iteration, and choose the run that yields the lowest loss.

Tuned Splitting Our final model (HUM-QQ + lex) uses λ = 0.35.

6.8.3 Rule Lexica

Here we list the full lexica for the auxiliary clustering rules described in Section 6.4.2.

Negation 5 items: n’t, never, no, no longer, not.

These are drawn directly from the PropBank guidelines (Babko-Malaya, 2005, p. 32).

Modals 23 items: ’d, ’ll, ’ve, able, ca, can, can’t, could, going, gon, gonna, have, may, might,

must, ought, shall, should, used, will, wo, won’t, would.
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Note the inclusion of have, used, able, and going, which are parts of phrasal modals (e.g., have

to), which are included in AM-MOD according to the PropBank guidelines (Babko-Malaya, 2005, p.

32).

Discourse 55 items: after all, ah, also, and, and so, as a result, as we’ve seen before, as well,

but, certainly, damn, either, for example, for instance, for one, for one thing, frankly, furthermore,

gosh, hence, however, in addition, in any case, in any event, in contrast, in fact, in other words, in

particular, in that case, in this case, in turn, indeed, instead, ironically, moreover, nonetheless, of

course, oh gosh, oh my god, oh my gosh, on the other hand, or, particularly, rather, regardless,

similarly, so, specifically, thereby, therefore, though, thus, too, uh, um.

Note the inclusion of some interjections, (ah, oh my gosh, etc.), which are included in AM-DIS

according to the PropBank guidelines (Babko-Malaya, 2005, p. 31).

6.8.4 Auxiliary Rule Performance Breakdown

In Table 6.7, we provide a more detailed accounting of the improvements that arise from our

auxiliary rules described in Section 6.4.2 and Table 6.5. The negation and discourse rules bring

precision improvements, likely because they mostly have ADV dependencies outgoing. The modal

rule improves both precision and recall because modals have many different kinds of outgoing

dependencies, due to their status as heads of clauses (which can serve in many syntactic capacities).

Finally, the passive alternation rule aids precision by splitting SBJ between active and passive uses,

and aids recall by grouping LGS with the active SBJ and passive SBJ with active OBJ. This mainly

affects the core argument labels A0 and A1, as shown in Table 6.5 — especially A1, as we also find

for QA-SRL questions in Section 6.6.1.

6.8.5 Tuned Splitting Evaluation

Our model has a single parameter λ which determines the number of clusters for each verb via

the tradeoff between the data likelihood and clustering likelihood. We compare this to a constant

baseline (the same number of clusters for all verbs) and an oracle upper bound which chooses
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Tuning Method PU CO F1

Constant k = 6 83.9 86.7 85.3
λ = 0.35 85.4 88.8 87.1
F1 Oracle 87.6 89.6 88.6

Table 6.8: Comparison of methods to set the number of
clusters for each verb, reported for HUM-QQ+ lex.

Setting Objective

λ = 1 Mixture of Unigrams Likelihood
λ = 0 Jensen-Shannon Divergence
λ = −1 Mutual Information

Table 6.9: Objectives reproduced by the HUM loss for
different settings of λ, described in Section 6.8.7.

Model B3P B3R F1 ∆F1

Gold Syntax

SYNTF 74.7 68.3 71.3 0.0
+ lex 79.1 70.4 74.5 +3.2
+ pass→act 77.4 72.1 74.7 +3.4
+ all rules 82.2 74.7 78.3 +7.0

Automatic QA-SRL

HUM-QQ 71.1 79.0 74.8 +3.5
- conn. pen. 71.6 75.7 73.6 +2.3
+ lex 79.8 83.4 81.6 +10.3
+ lex + MI 77.7 82.1 79.9 +8.6

Table 6.10: B3 Results on models we tested. The gap between HUM-QQ and SYNTF is larger than for purity and
collocation, as B3 is a tougher metric which is more discriminative between clusterings. The last model variant (+MI)
is described in Section 6.8.7.

the split that maximizes the purity/collocation F1 score for each verb independently. As shown

in Table 6.8, we improve on the constant baseline by 1.8 points (85.3→87.1), but fall short of the

oracle by 1.5 points (87.1→88.6). There is room for improvement, but errors in the tuning step may

not be the most significant factor to concern future work.

6.8.6 B3 Results

Results using B3 metrics on models we tested are shown in Table 6.10.
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6.8.7 Related Clustering Algorithms

Recall the Hard Unigram Mixture loss

LHUM
λ (C) = − log P(X | C)− λ log P(C).

Different settings of λ reproduce several objectives present in the literature, summarized in Table 6.9.

As written in Section 6.3, when λ = 1, minimizing LHUM
1 maximizes likelihood of the data X under

a mixture of unigrams model (Nigam et al., 2000).

When the number of clusters k is fixed, setting λ = 0 as in our greedy merging step (Sec-

tion 6.3.3) is equivalent to enforcing a uniform prior π over mixture components. In this case, the

gain in loss on each merge is the Jensen-Shannon Divergence (JSD) between the merged clusters,

scaled by their total size and using each cluster’s size to determine its mixing weights in the di-

vergence, as in the mixture-based definition of JSD by Lin (1991). JSD is used in the same way

by Chrupała (2012), without the scaling and weighting, as a similarity measure for agglomerative

clustering.

Finally, setting λ = −1 reduces the HUM loss to the mutual information between the QA-

SRL questions under ϕ and the cluster assignment C, which has been used in prior work to

encourage informative clusterings (Michael et al., 2020). This is related to the distributional

clustering paradigm of Pereira et al. (1993), which aims to identify common factors that explain

distributional data, and which Slonim and Tishby (1999) frame in terms of an information bottleneck

that maximizes mutual information between the data and a jointly distributed ‘relevance’ variable

(though in our case, the reference variable is the cluster assignment itself). Setting λ = −1 in the

greedy merging step, we find (in Table 6.10) that using a mutual information criterion in this way

hurts performance. We guess this is because the objective incentivizes clusters of uniform size,

which does not match the highly skewed distributions of gold semantic roles.

6.8.8 Manual Analysis Results

Improved Verbs on A0 The top 50 verbs by F1 gain on A0 from SYNTF to HUM-QQ are:

compete, conduct, connect, combine, dominate, restore, require, yield, limit, ban, direct, tie, oversee,
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contain, identify, increase, evaluate, specialize, allow, assist, restrict, found, grant, feature, propose,

detail, force, convert, veto, rate, bolster, appoint, enact, design, list, lead, resolve, retire, schedule,

reach, analyze, remove, speed, manage, deliver, underlie, revise, emerge, enable, block.

We examined 30 sentences containing the top 3 verbs (compete, conduct, and connect). There

were 31 A0 arguments of these verbs in these sentences. Of these, 8 (26%) were overt, 11 (35%)

were extracted subjects of relative clauses, 5 (16%) were modified by the predicate appearing in an

adjectival clause, 5 (16%) were subjects of open complements of control verbs, and 2 (6%) were

otherwise implicit (subject of an adverbial clause or open complement not under a control verb).

Improved Verbs on A1 We examined the top 50 verbs by their difference in B3 performance

on A1 between SYNTF and HUM-QQ. 48 of them are transitive; the other two are bolded. In

decreasing order of F1 gain, they are: propose, prefer, price, relate, involve, help, choose, consider,

design, mention, identify, release, include, exist, range, value, revise, lead, associate, need, increase,

import, prove, feel, place, determine, limit, found, enact, control, cancel, dilute, disclose, select,

exclude, force, insure, accrue, damage, calculate, hurt, secure, delay, regard, record, open, use,

concern, weaken, adjust.

6.8.9 Calculating Normalized PMI

Here we describe some special concerns for our use of normalized PMI in Section 6.6.2.

Pointwise mutual information (PMI) is a measure of how likely two items (such as tokens in

a corpus) are to occur together relative to chance (Church and Hanks, 1989). One feature of PMI

is that it tends to be larger for rare events: if two items x and y always occur together, then their

PMI is − log P(x, y). This can make it difficult to assess association patterns among items with

greatly varying probabilities (e.g., the AM-CAU role appears for 1% of arguments, while A1 appears

for 27%). So we use normalized PMI (NPMI; Bouma, 2009), which factors out the effect of item

frequency on PMI. Formally, the NPMI of x and y is(
log

P(x, y)

P(x) P(y)

)/
− log(P(x, y)) , (6.1)
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taking the limit value of -1 when they never occur together, 1 when they only occur together, and

0 when they occur independently. We use NPMI to analyze the co-occurrence of gold labels in

predicted clusters: A pair of gold labels with high NPMI are preferentially grouped together by

the induced roleset, whereas two labels with low NPMI are preferentially distinguished. The joint

distribution between gold labels is generated by drawing one point (x) uniformly at random from

the data, drawing another (y) uniformly at random from x’s predicted cluster, and reading the gold

labels of both. NPMI has been used to analyze clusters in this way by Michael et al. (2020).

Calculating NPMI naïvely on our full clustering has a caveat. The denominator of the PMI

term in Equation 6.1, P(x) P(y), uses marginal probabilities of x and y over the corpus to calculate

chance co-occurrence. But our clusters are constrained not to overlap between verbs, so this does

not correctly estimate chance cooccurrence in our setting. Instead, we use the expectation over

verbs of within-verb chance cooccurrence:∑
v

P(x | v) P(y | v) P(v),

where P(v) is proportional to the number of arguments for the verb v.

6.8.10 Question Distributions by Role

We list the top questions and their probabilities for modifier roles in Table 6.11. Questions for core

roles and the ones covered by our lexical rules are in Table 6.12. We use verb (or verbs, or verbed)

as a placeholder for the verb, which in practice is replaced with the predicate for a given instance.
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Role Top Questions Prob

TMP When does something verb something? 0.34
When does something verb? 0.21
When is something verbed? 0.18
When does something verb somewhere? 0.03
When does sth. verb to do something? 0.02
How does something verb? 0.01
How is something verbed? 0.01

ADV Why does something verb something? 0.13
How does something verb something? 0.12
When does something verb something? 0.09
How is something verbed? 0.08
How does something verb? 0.08
Why does something verb? 0.05
Why is something verbed? 0.04
When does something verb? 0.04
What does something verb? 0.03
When is something verbed? 0.03

MNR How is something verbed? 0.25
How does something verb? 0.22
How does something verb something? 0.19
What does something verb? 0.02
Where does something verb? 0.02
Why does something verb something? 0.02
How does something verb somewhere? 0.02

LOC Where does something verb something? 0.24
Where is something verbed? 0.22
Where does something verb? 0.21
When does something verb something? 0.04
How does something verb something? 0.03
How does something verb? 0.02
How is something verbed? 0.02

PNC Why does something verb something? 0.29
Why is something verbed? 0.21
Why does something verb? 0.08
Why does something verb somewhere? 0.05
What is something verbed to do? 0.03
How is something verbed? 0.03
What is something verbed for? 0.02

CAU Why does something verb something? 0.32
Why does something verb? 0.16
Why is something verbed? 0.16
Why does something verb somewhere? 0.04
How does something verb? 0.04
Why does sth. verb to do something? 0.03

DIR Where does something verb? 0.40
How does something verb? 0.17
Where is something verbed? 0.10
Where does something verb something? 0.07
How is something verbed? 0.06
How does something verb something? 0.03

Table 6.11: Top questions for modifier roles. Most roles
align well with a wh-word, especially when, where, or
why. AM-ADV takes many wh-words, and how appears
often for nearly all modifier roles.

Role Top Questions Prob

A0 What verbs something? .65
What verbs? .14
How is something verbed? .02

A1 What does something verb? .42
What is verbed? .25
What verbs? .09
What verbs something? .03
What does something verb to do? .02

A2 What does something verb? .12
How is something verbed? .07
What verbs something? .07
Where is something verbed? .06
What is verbed? .06
How does something verb? .06
How much does something verb? .04

A3 How does something verb? .15
What does something verb? .09
How is something verbed? .07
Why does something verb something? .06
How does something verb something? .05
When does something verb? .05
Where does something verb? .04

A4 What does something verb to? .17
Where does something verb? .17
How does something verb? .16
How much does something verb? .14
What does something verb something to? .04
How is something verbed? .03

NEG What verbs something? .40
What verbs? .15
What is verbed? .12
How is something verbed? .05
How does something verb? .03
How does something verb something? .03

MOD What verbs something? .22
How does something verb something? .11
What verbs? .09
Why does something verb something? .07
What is verbed? .06
How does something verb? .06
How is something verbed? .06

DIS When does something verb something? .15
How does something verb something? .15
What verbs something? .08
How is something verbed? .07
How does something verb? .07
Why does something verb something? .06
When does something verb? .05

Table 6.12: Top questions for core roles and lexical
rules. The questions for AM-NEG, AM-MOD, and AM-DIS
don’t make sense, while core roles are as expected: A0
is mostly subjects; A1 mixes subjects and objects, with
some complements; A2 and on are more varied.
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Part IV

CONCLUDING THOUGHTS

In this document I proposed the development of data-driven theory as a paradigm for scientific

progress in NLP. Beginning from the perspective of the philosophy of language, I propose theories

as essential to creating common understanding between humans and machines, allowing for the

construction of language understanding systems and the employment of AI systems in service of

humans’ goals (Chapter 2). To make it feasible to construct theories of complex language behaviors,

I propose a framework for scalable theories based in Pragmatist epistemology (Chapter 3). In this

framework, developing a scalable theory involves:

• Collecting carefully-scoped data in a way that directly represents a phenomenon of interest

while imposing minimal prior theoretical assumptions,

• Potentially increasing the scale and coverage of that data using a learned black-box model as

a data simulator,

• Inducing simple, comprehensible models of this high-coverage data using machine learning,

and

• Examining the results to debug the theory and data, iterating to improve the quality and cover-

age of both while also potentially improving our scientific understanding of the phenomenon

of interest.

As a case study and proving ground for scalable theory, I present a series of projects involving

the annotation of question-answer pairs as representations of linguistic structure and meaning (Chap-

ters 4 and 5) — most notably QA-SRL, which I find to strike a balance of four proposed Principles
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of Data for Scientific NLP (Part II): 1) theoretical minimalism, 2) broad comprehensibility, 3)

annotation constraints, and 4) narrow scope. Using QA-SRL, I show how to leverage black-box

data simulation together with simple probabilistic modeling to automatically induce an ontology

of semantic roles which is directly and comprehensibly grounded in phenomena that the theory of

semantic roles is meant to explain. This not only lays the groundwork for new scalable theoretical

developments in semantic representation, but can serve as an example to guide future work on

scalable theories in other domains.

Why now?

The justification for building scalable, data-driven theories can be summarized as follows (given in

longer form in Chapters 2 and 3):

1. To build systems which generalize in controllable, predictable ways and can usefully inform

us of how to act in the world, we need comprehensible theories of their desired behavior.

2. However, the behaviors we wish to produce in AI and NLP are too complex for us to easily

write down theories of how they should work.

3. So instead, we must use machines (i.e., statistical models) to construct our theories on the

basis of data in a scalable way. The role for the scientist here is twofold:

• to carefully determine the scope of the phenomena to be explained and curate the data

accordingly, and

• to define the meta-theory which relates the learned theory to the data.

This argument could have been made at any point in the history of NLP, so it is worth discussing

why it has not been articulated in this way before, and why it is particularly worth articulating now.

First, as a caveat: the essence of the argument has been made before, even if not as explicitly

or using the same language. Approaches similar to my proposal are used in grammar engineering

(Oepen et al., 2004; Flickinger et al., 2017) and the Decompositional Semantics Initiative (White
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et al., 2016). In linguistic typology, Haspelmath (2010) argues for framework-free grammatical

theory, making similar points about the relationship between data and theory. There are some

differences, however, between my approach and that of these authors, since I am focused on

applications in NLP where the vastness and complexity of the domain becomes more of a challenge

(Sutton, 2019). The relationship between my approach and theirs is discussed in more depth in

Chapter 3.

Returning to the question: Why is the argument for scalable, data-driven theory particularly

relevant now? My view is that it is because until the deep learning revolution, the field was in

an era of underfitting. Pre-neural statistical models such as Conditional Random Fields (Lafferty

et al., 2001) struggle even in-distribution on tasks like syntactic and semantic parsing, let alone

more complex end-user tasks like question answering or language generation tasks. It may seem

premature to argue about the generalization properties of NLP systems out-of-distribution when

they are not even expressive enough to perform well in-distribution with lots of training data. In

addition, the performance of these systems was weak enough that many were convinced that they

would benefit from the continued development of hand-curated linguistic resources like PropBank

(Palmer et al., 2005).

With deep learning, all of these factors changed: the limits of hand-curated resources like

PropBank have been surpassed, and highly-expressive models can fit all kinds of data distributions,

leaving us face-to-face with the problem of generalization and the need for data-driven theory.

On top of this, we also have essential new tools available for data simulation: the semantic role

induction algorithm in Chapter 6 would not have been workable without a neural model to simulate

dense annotation of QA-SRL questions. So we are finally in a position to make such theories

scalable.

Looking forward

Extending the basic paradigm of scalable theory to more facilities of language (e.g., syntax or word

sense) and more complex phenomena (e.g., representations of world knowledge, common sense,

reasoning and more) remains a major challenge. As the scope of the phenomena to be represented
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increases, greater annotation constraints will be necessary in order to ensure that the desired

phenomena are adequately covered. However, doing so is challenging while maintaining theoretical

minimalism. My hope is that scalable theories of simple, narrowly-scoped subproblems (e.g.,

semantic roles) will provide annotation constraints that can make more complex tasks tractable to

exhaustively annotate, without introducing the same problems as in the Rationalist paradigm where

inconsistencies, underspecification, and arbitrary choices in the theory limit the usefulness of the

data. In this way, it may be possible to bootstrap from narrowly-scoped theories into progressively

broad accounts of language structure and meaning, and intelligent behavior more generally.

At this point, such talk is speculation. It is unclear how the paradigm of data-driven theory will

generalize to more complex tasks. However, in this work I hope to have provided an argument this

kind of work is at least worth attempting, and perhaps laid some groundwork and principles which

can be used as a starting point for it to be done in the future.
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